

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 1 of 87

 1

 2

 3

 4

 5

 6

 7

 8

EPCTM Generation 1 Tag Data Standards Version 9

1.1 Rev.1.27 10

 11
Standard Specification 12

10 May 2005 13
 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 2 of 87

 25

DOCUMENT HISTORY 26

 27

Document Number: 1.1
Document Version: 1.27
Document Date : 2005-05-10

 28

 29
 30

Document Summary 31

 32

Document Title: EPCTM Generation 1 Tag Data Standards Version
Owner: Tag Data Standard Work Group
Status: (check one box) DRAFT X Approved

 33

Document Change History 34

 35
Date of
Change

Version Reason for
Change

Summary of Change

03-31-2004 1.24 Update errata • Comments and errata identified during public
review

08-12-2004 1.25 Update errata • Further errata identified after release of v1.24 –
especially inconsistencies regarding SSCC-96 and
GRAI-96 partition tables

09-16-2004 1.25 Update errata • Correct errors re numeric range of Asset Type of
GRAI-96 and include further reference to Appendix
F in section 5 – i.e. need to check valid numeric
ranges for 64-bit and 96-bit tags

11-19-2004 1.26 Update errata • Added clarification to restrictions to serial
numbers in SGTIN, GRAI, GIAI

05-10-2005 1.27 Revision • Added DoD construct header
• Added hexadecimal expression for raw URI
representation
• Added disclaimer regarding non-applicability of
TDS ver 1.1 to Gen 2 tags
• Changed doc title to indicate tag generation
covered by this doc and to quickly differentiate
between the doc and the next version. Changes in
the definition of the Filter Values (Section 3.4.1,
3.4.2, 3.5.1, 3.5.2)
• Changes in the Filter Value tables (Table 5, 9,
13, 17, 21)
• Changes in the Filter Value table in Appendix A,
“Encoding Scheme Summary Table”
• Addition of word “Indicator Digit” in encoding

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 3 of 87

process step 3 for SGTIN-64(Section 3.4.1.1) and
SGTIN-96(Section 3.4.2.1)
• Addition of word “Extension Digit” in encoding
process step 3 for SSCC-64(Section 3.5.1.1) and
SSCC-96(Section 3.5.2.1)

 36

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 4 of 87

Abstract 37

This document defines the EPC Tag Data Standards version 1.1. These standards define 38
completely that portion of EPC tag data that is standardized, including how that data is 39
encoded on the EPC tag itself (i.e. the EPC Tag Encodings), as well as how it is encoded 40
for use in the information systems layers of the EPC Systems Network (i.e. the EPC URI 41
or Uniform Resource Identifier Encodings). Readers should be advised that this Tag 42
Data Specification Version 1.1 only applies to tag types in common use at the time of its 43
publication. In particular, it does not provide specific guidance for using UHF Class 1 44
Generation 2 tags ("Gen 2 tags"). It is intended that future Tag Data Specification will 45
add guidance for use of Gen 2 tags, along with any substantive changes to the Tag Data 46
Specification needed to support aspects of Gen 2 tags that differ from earlier tag types. 47
 48
The EPC Tag Encodings include a Header field followed by one or more Value Fields. 49
The Header field defines the overall length and format of the Values Fields. The Value 50
Fields contain a unique EPC Identifier and optional Filter Value when the latter is judged 51
to be important to encode on the tag itself. 52

The EPC URI Encodings provide the means for applications software to process EPC 53
Tag Encodings either literally (i.e. at the bit level) or at various levels of semantic 54
abstraction that is independent of the tag variations. This document defines four 55
categories of URI: 56

1. URIs for pure identities, sometimes called “canonical forms.” These contain only 57
the unique information that identifies a specific physical object, and are 58
independent of tag encodings. 59

2. URIs that represent specific tag encodings. These are used in software 60
applications where the encoding scheme is relevant, as when commanding 61
software to write a tag. 62

3. URIs that represent patterns, or sets of EPCs. These are used when instructing 63
software how to filter tag data. 64

4. URIs that represent raw tag information, generally used only for error reporting 65
purposes. 66

 67

Status of this document 68

This section describes the status of this document at the time of its publication. Other 69
documents may supersede this document. The latest status of this document series is 70
maintained at EPCglobal. This document is the ratified specification named Tag Data 71
Standards Version 1.1 Rev.1.27. Comments on this document should be sent to 72
epcinfo@epcglobalinc.org. 73

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 5 of 87

Changes from Previous Versions 74

Version 1.1, as the first formally specified version, serves as the basis for assignment and 75
use of EPC numbers in standard, open systems applications. Previous versions, consisting 76
of technical reports and working drafts, recommended certain headers, tag lengths, and 77
EPC data structures. Many of these constructs have been modified in the development of 78
Version 1.1, and are generally not preserved for standard usage. Specifically, Version 1.1 79
supersedes all previous definitions of EPC Tag Data Standards. 80

 81

Beyond the new content in Version 1.1 (such as the addition of new coding formats), the 82
most significant changes to prior versions include the following: 83

1. Redefinition and clarification of the rules for assigning Header values: (i) to allow 84
various Header lengths for a given length tag, to support more encoding options in 85
a given length tag; and (ii) to indicate the tag length via the left-most 86
(“preamble”) portion of the Header, to support maximum reader efficiency. 87

2. Withdrawal of the 64-bit Universal Identifier format Types I-III, previously 88
identified by specific 2-bit Headers. The Header assigned to the previous 89
Universal Type II is now assigned to the 64-bit SGTIN encoding. The Type I and 90
III Headers have not been reassigned to other encodings, but are rather simply 91
designated as “reserved.” The Headers associated with Types I and III will 92
remain reserved for a yet-to-be-determined period of time to support tags that 93
have previously used them, unless a clear need for them arises (as was the case 94
with the SGTIN), in which case they will be considered for reassignment. 95

3. Renumbering of the 96-bit Universal Identifier Header to fit within the revised 96
Header rules, and renaming this code the “General Identifier” to avoid confusion 97
with the Unique Identifier (UID) that will be introduced by the US Department of 98
Defense and its suppliers. 99

4. Addition of DoD construct headers and URI expression. 100

5. Addition of hexadecimal expression for raw URI representation. 101

 102

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 6 of 87

Table of Contents 103

1 Introduction .. 9 104

2 Identity Concepts.. 10 105

2.1 Pure Identities .. 11 106

2.1.1 General Types ... 11 107

2.1.2 EAN.UCC System Identity Types .. 12 108

2.1.2.1 Serialized Global Trade Item Number (SGTIN).................................... 13 109

2.1.2.2 Serial Shipping Container Code (SSCC) ... 14 110

2.1.2.3 Serialized Global Location Number (SGLN)... 15 111

2.1.2.4 Global Returnable Asset Identifier (GRAI) ... 16 112

2.1.2.5 Global Individual Asset Identifier (GIAI).. 16 113

2.1.3 DoD Identity Type .. 17 114

3 EPC Tag Bit-level Encodings .. 17 115

3.1 Headers .. 18 116

3.2 Notational Conventions ... 20 117

3.3 General Identifier (GID-96)... 21 118

3.3.1.1 GID-96 Encoding Procedure.. 22 119

3.3.1.2 GID-96 Decoding Procedure.. 22 120

3.4 Serialized Global Trade Item Number (SGTIN) ... 23 121

3.4.1 SGTIN-64 ... 23 122

3.4.1.1 SGTIN-64 Encoding Procedure ... 25 123

3.4.1.2 SGTIN-64 Decoding Procedure ... 25 124

3.4.2 SGTIN-96 ... 26 125

3.4.2.1 SGTIN-96 Encoding Procedure ... 28 126

3.4.2.2 SGTIN-96 Decoding Procedure ... 29 127

3.5 Serial Shipping Container Code (SSCC)... 30 128

3.5.1 SSCC-64 ... 30 129

3.5.1.1 SSCC-64 Encoding Procedure ... 32 130

3.5.1.2 SSCC-64 Decoding Procedure ... 32 131

3.5.2 SSCC-96 ... 33 132

3.5.2.1 SSCC-96 Encoding Procedure ... 34 133

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 7 of 87

3.5.2.2 SSCC-96 Decoding Procedure ... 35 134

3.6 Serialized Global Location Number (SGLN).. 36 135

3.6.1 SGLN-64... 36 136

3.6.1.1 SGLN-64 Encoding Procedure... 37 137

3.6.1.2 SGLN-64 Decoding Procedure .. 38 138

3.6.2 SGLN-96... 39 139

3.6.2.1 SGLN-96 Encoding Procedure... 40 140

3.6.2.2 SGLN-96 Decoding Procedure .. 41 141

3.7 Global Returnable Asset Identifier (GRAI)... 41 142

3.7.1 GRAI-64 ... 42 143

3.7.1.1 GRAI-64 Encoding Procedure ... 43 144

3.7.1.2 GRAI-64 Decoding Procedure ... 44 145

3.7.2 GRAI-96 ... 44 146

3.7.2.1 GRAI-96 Encoding Procedure ... 46 147

3.7.2.2 GRAI-96 Decoding Procedure ... 46 148

3.8 Global Individual Asset Identifier (GIAI) ... 47 149

3.8.1 GIAI-64... 48 150

3.8.1.1 GIAI-64 Encoding Procedure... 49 151

3.8.1.2 GIAI-64 Decoding Procedure .. 49 152

3.8.2 GIAI-96... 50 153

3.8.2.1 GIAI-96 Encoding Procedure... 51 154

3.8.2.2 GIAI-96 Decoding Procedure .. 52 155

3.9 DoD Tag Data Constructs (non-normative) .. 53 156

3.9.1 DoD-64 ... 53 157

3.9.2 DoD-96 ... 53 158

4 URI Representation .. 54 159

4.1 URI Forms for Pure Identities ... 54 160

4.2 URI Forms for Related Data Types... 57 161

4.2.1 URIs for EPC Tags ... 57 162

4.2.2 URIs for Raw Bit Strings Arising From Invalid Tags 58 163

4.2.3 URIs for EPC Patterns .. 59 164

4.3 Syntax .. 60 165

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 8 of 87

4.3.1 Common Grammar Elements ... 60 166

4.3.2 EPCGID-URI.. 61 167

4.3.3 SGTIN-URI... 61 168

4.3.4 SSCC-URI... 61 169

4.3.5 SGLN-URI.. 61 170

4.3.6 GRAI-URI... 61 171

4.3.7 GIAI-URI.. 62 172

4.3.8 EPC Tag URI .. 62 173

4.3.9 Raw Tag URI .. 63 174

4.3.10 EPC Pattern URI.. 63 175

4.3.11 DoD Construct URI ... 63 176

4.3.12 Summary (non-normative) .. 64 177

5 Translation between EPC-URI and Other EPC Representations 66 178

6 Semantics of EPC Pattern URIs ... 73 179

7 Background Information .. 74 180

8 References .. 74 181

9 Appendix A: Encoding Scheme Summary Tables... 75 182

10 Appendix B: EPC Header Values and Tag Identity Lengths.................................. 80 183

11 Appendix C: Example of a Specific Trade Item (SGTIN) 82 184

12 Appendix D: Decimal values of powers of 2 Table.. 85 185

13 Appendix E: List of Abbreviations ... 86 186

14 Appendix F: General EAN.UCC Specifications.. 87 187

 188

 189

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 9 of 87

1 Introduction 190
The Electronic Product Code™ (EPC™) is an identification scheme for universally 191
identifying physical objects via Radio Frequency Identification (RFID) tags and other 192
means. The standardized EPC data consists of an EPC (or EPC Identifier) that uniquely 193
identifies an individual object, as well as an optional Filter Value when judged to be 194
necessary to enable effective and efficient reading of the EPC tags. In addition to this 195
standardized data, certain Classes of EPC tags will allow user-defined data. The EPC 196
Tag Data Standards will define the length and position of this data, without defining its 197
content. Currently no user-defined data specifications exist since the related Class tags 198
have not been defined. 199

The EPC Identifier is a meta-coding scheme designed to support the needs of various 200
industries by accommodating both existing coding schemes where possible and defining 201
new schemes where necessary. The various coding schemes are referred to as Domain 202
Identifiers, to indicate that they provide object identification within certain domains such 203
as a particular industry or group of industries. As such, the Electronic Product Code 204
represents a family of coding schemes (or “namespaces”) and a means to make them 205
unique across all possible EPC-compliant tags. These concepts are depicted in the chart 206
below. 207

 208

Figure A. EPC Terminology 209
 210

 In this version of the EPC – EPC Version 1.1 – the specific coding schemes include a 211
General Identifier (GID), a serialized version of the EAN.UCC Global Trade Item 212
Number (GTIN®), the EAN.UCC Serial Shipping Container Code (SSCC®), the 213

Key Terminology

EPC or EPC Identifier

e.g. SGTIN, SGLN, SSCC, GID

Standard EPC Tag Data
Header Filter Value

(Optional)
Domain Identifier

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 10 of 87

EAN.UCC Global Location Number (GLN®), the EAN.UCC Global Returnable Asset 214
Identifier (GRAI®), and the EAN.UCC Global Individual Asset Identifier (GIAI®). 215

In the following sections, we will describe the structure and organization of the EPC and 216
provide illustrations to show its recommended use. 217

The EPCglobal Tag Data Standard V1.1 R1.27 has been approved by EAN.UCC with the 218
restrictions outlined in the General EAN.UCC Specifications Section 3.7, which is 219
excerpted into Tag Data Standard Appendix F. 220

The latest version of this specification can be obtained from EPCglobal. 221

2 Identity Concepts 222
To better understand the overall framework of the EPC Tag Data Standards, it’s helpful 223
to distinguish between three levels of identification (See Figure B). Although this 224
specification addresses the pure identity and encoding layers in detail, all three layers are 225
described below to explain the layer concepts and the context for the encoding layer. 226

 227

Figure B. Defined Identity Namespaces, Encodings, and Realizations. 228

Physical Realization Layer

Pure Identity Layer

Encoding Layer

Identity
Namespace

Additional

Realization

Encoding
Procedure

Identity

URI Encoding

Realization

Tag Encoding

…

…

…

Identity
Namespace

Encoding
Procedure

Identity

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 11 of 87

• Pure identity -- the identity associated with a specific physical or logical entity, 229
independent of any particular encoding vehicle such as an RF tag, bar code or 230
database field. As such, a pure identity is an abstract name or number used to identify 231
an entity. A pure identity consists of the information required to uniquely identify a 232
specific entity, and no more. Identity URI – a representation of a pure identity as a 233
Uniform Resource Identifier (URI). A URI is a character string representation that is 234
commonly used to exchange identity data between software components of a larger 235
system. 236

• Encoding -- a pure identity, together with additional information such as filter value, 237
rendered into a specific syntax (typically consisting of value fields of specific sizes). 238
A given pure identity may have a number of possible encodings, such as a Barcode 239
Encoding, various Tag Encodings, and various URI Encodings. Encodings may also 240
incorporate additional data besides the identity (such as the Filter Value used in some 241
encodings), in which case the encoding scheme specifies what additional data it can 242
hold. 243

• Physical Realization of an Encoding -- an encoding rendered in a concrete 244
implementation suitable for a particular machine-readable form, such as a specific 245
kind of RF tag or specific database field. A given encoding may have a number of 246
possible physical realizations. 247

For example, the Serial Shipping Container Code (SSCC) format as defined by the 248
EAN.UCC System is an example of a pure identity. An SSCC encoded into the EPC-249
SSCC 96-bit format is an example of an encoding. That 96-bit encoding, written onto a 250
UHF Class 1 RF Tag, is an example of a physical realization. 251

A particular encoding scheme may implicitly impose constraints on the range of identities 252
that may be represented using that encoding. For example, only 16,384 company 253
prefixes can be encoded in the 64-bit SSCC scheme. In general, each encoding scheme 254
specifies what constraints it imposes on the range of identities it can represent. 255

Conversely, a particular encoding scheme may accommodate values that are not valid 256
with respect to the underlying pure identity type, thereby requiring an explicit constraint. 257
For example, the EPC-SSCC 96-bit encoding provides 24 bits to encode a 7-digit 258
company prefix. In a 24-bit field, it is possible to encode the decimal number 10,000,001, 259
which is longer than 7 decimal digits. Therefore, this does not represent a valid SSCC, 260
and is forbidden. In general, each encoding scheme specifies what limits it imposes on 261
the value that may appear in any given encoded field. 262

2.1 Pure Identities 263
This section defines the pure identity types for which this document specifies encoding 264
schemes. 265

2.1.1 General Types 266
This version of the EPC Tag Data Standards defines one general identity type. The 267
General Identifier (GID-96) is independent of any known, existing specifications or 268

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 12 of 87

identity schemes. The General Identifier is composed of three fields - the General 269
Manager Number, Object Class and Serial Number. Encodings of the GID include a 270
fourth field, the header, to guarantee uniqueness in the EPC namespace. 271

The General Manager Number identifies an organizational entity (essentially a company, 272
manager or other organization) that is responsible for maintaining the numbers in 273
subsequent fields – Object Class and Serial Number. EPCglobal assigns the General 274
Manager Number to an entity, and ensures that each General Manager Number is unique. 275

The Object Class is used by an EPC managing entity to identify a class or “type” of thing. 276
These object class numbers, of course, must be unique within each General Manager 277
Number domain. Examples of Object Classes could include case Stock Keeping Units of 278
consumer-packaged goods or different structures in a highway system, like road signs, 279
lighting poles, and bridges, where the managing entity is a County. 280

Finally, the Serial Number code, or serial number, is unique within each object class. In 281
other words, the managing entity is responsible for assigning unique, non-repeating serial 282
numbers for every instance within each object class. 283

2.1.2 EAN.UCC System Identity Types 284
This version of the EPC Tag Data Standards defines five EPC identity types derived from 285
the EAN.UCC System family of product codes, each described in the subsections below. 286

EAN.UCC System codes have a common structure, consisting of a fixed number of 287
decimal digits that encode the identity, plus one additional “check digit” which is 288
computed algorithmically from the other digits. Within the non-check digits, there is an 289
implicit division into two fields: a Company Prefix assigned by EAN or UCC to a 290
managing entity, and the remaining digits, which are assigned by the managing entity. 291
(The digits apart from the Company Prefix are called by a different name by each of the 292
EAN.UCC System codes.) The number of decimal digits in the Company Prefix varies 293
from 6 to 12 depending on the particular Company Prefix assigned. The number of 294
remaining digits therefore varies inversely so that the total number of digits is fixed for a 295
particular EAN.UCC System code type. 296

The EAN.UCC recommendations for the encoding of EAN.UCC System identities into 297
bar codes, as well as for their use within associated data processing software, stipulate 298
that the digits comprising a EAN.UCC System code should always be processed together 299
as a unit, and not parsed into individual fields. This recommendation, however, is not 300
appropriate within the EPC Network, as the ability to divide a code into the part assigned 301
to the managing entity (the Company Prefix in EAN.UCC System types) versus the part 302
that is managed by the managing entity (the remainder) is essential to the proper 303
functioning of the Object Name Service (ONS). In addition, the ability to distinguish the 304
Company Prefix is believed to be useful in filtering or otherwise securing access to EPC-305
derived data. Hence, the EPC encodings for EAN.UCC code types specified herein 306
deviate from the aforementioned recommendations in the following ways: 307

• EPC encodings carry an explicit division between the Company Prefix and the 308
remaining digits, with each individually encoded into binary. Hence, converting from 309

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 13 of 87

the traditional decimal representation of an EAN.UCC System code and an EPC 310
encoding requires independent knowledge of the length of the Company Prefix. 311

• EPC encodings do not include the check digit. Hence, converting from an EPC 312
encoding to a traditional decimal representation of a code requires that the check digit 313
be recalculated from the other digits. 314

2.1.2.1 Serialized Global Trade Item Number (SGTIN) 315
The Serialized Global Trade Item Number is a new identity type based on the EAN.UCC 316
Global Trade Item Number (GTIN) code defined in the General EAN.UCC 317
Specifications. A GTIN by itself does not fit the definition of an EPC pure identity, 318
because it does not uniquely identify a single physical object. Instead, a GTIN identifies 319
a particular class of object, such as a particular kind of product or SKU. 320

All representations of SGTIN support the full 14-digit GTIN format. This means that the 321
zero indicator-digit and leading zero in the Company Prefix for UCC-12, and the zero 322
indicator-digit for EAN/UCC-13, can be encoded and interpreted accurately from an 323
EPC encoding. EAN/UCC-8 is not currently supported in EPC, but would be supported 324
in full 14-digit GTIN format as well. 325

To create a unique identifier for individual objects, the GTIN is augmented with a serial 326
number, which the managing entity is responsible for assigning uniquely to individual 327
object classes. The combination of GTIN and a unique serial number is called a 328
Serialized GTIN (SGTIN). 329

The SGTIN consists of the following information elements: 330

• The Company Prefix, assigned by EAN or UCC to a managing entity. The Company 331
Prefix is the same as the Company Prefix digits within an EAN.UCC GTIN decimal 332
code. 333

• The Item Reference, assigned by the managing entity to a particular object class. The 334
Item Reference for the purposes of EPC encoding is derived from the GTIN by 335
concatenating the Indicator Digit of the GTIN and the Item Reference digits, and 336
treating the result as a single integer. 337

• The Serial Number, assigned by the managing entity to an individual object. The 338
serial number is not part of the GTIN code, but is formally a part of the SGTIN. 339

 340

 341
 342

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 14 of 87

Figure C. How the parts of the decimal SGTIN are extracted, rearranged, and augmented for 343
encoding. 344

The SGTIN is not explicitly defined in the EAN.UCC General Specifications. However, 345
it may be considered equivalent to a UCC/EAN-128 bar code that contains both a GTIN 346
(Application Identifier 01) and a serial number (Application Identifier 21). Serial 347
numbers in AI 21 consist of one to twenty characters, where each character can be a digit, 348
uppercase or lowercase letter, or one of a number of allowed punctuation characters. The 349
complete AI 21 syntax is supported by the pure identity URI syntax specified in 350
Section 4.3.3. 351

When representing serial numbers in 64- and 96-bit tags, however, only a subset of the 352
serial number allowed in the General EAN.UCC Specifications for Application Identifier 353
21 are permitted. Specifically, the permitted serial numbers are those consisting of one or 354
more digits characters, with no leading zeros, and whose value when considered as an 355
integer fits within the range restrictions of the 64- and 96-bit tag encodings. 356

While these limitations exist for 64- and 96-bit tag encodings, future tag encodings may 357
allow a wider range of serial numbers. Therefore, application authors and database 358
designers should take the EAN.UCC specifications for Application Identifier 21 into 359
account in order to accommodate further expansions of the Tag Data Standard. 360

Explanation (non-normative): The restrictions are necessary for 64- and 96-bit tags in 361
order for serial numbers to fit within the small number of bits we have available. So we 362
restrict the range, and also disallow alphabetic characters. The reason we also forbid 363
leading zeros is that on these tags we're encoding the serial number value by considering 364
it to be a decimal integer then encoding the integer value in binary. By considering it to 365
be a decimal integer, we can't distinguish between "00034", "034", or "34" (for example) 366
-- they all have the same value when considered as an integer rather than a character 367
string. In order to insure that every encoded value can be decoded uniquely, we 368
arbitrarily say that serial numbers can't have leading zeros. Then, when we see the bits 369
0000000000000000000010010 on the tag, we decode the serial number as "34" (not 370
"034" or "00034"). 371

2.1.2.2 Serial Shipping Container Code (SSCC) 372
The Serial Shipping Container Code (SSCC) is defined by the General EAN.UCC 373
Specifications. Unlike the GTIN, the SSCC is already intended for assignment to 374
individual objects and therefore does not require any additional fields to serve as an EPC 375
pure identity. 376

Note that many applications of SSCC have historically included the Application Identifier 377
(00) in the SSCC identifier field when stored in a database. This is not a standard 378
requirement, but a widespread practice. The Application Identifier is a sort of header 379
used in bar code applications, and can be inferred directly from EPC headers 380
representing SSCC. In other words, an SSCC EPC can be interpreted as needed to 381
include the (00) as part of the SSCC identifier or not. 382

The SSCC consists of the following information elements: 383

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 15 of 87

• The Company Prefix, assigned by EAN or UCC to a managing entity. The Company 384
Prefix is the same as the Company Prefix digits within an EAN.UCC SSCC decimal 385
code. 386

• The Serial Reference, assigned uniquely by the managing entity to a specific shipping 387
unit. The Serial Reference for the purposes of EPC encoding is derived from the 388
SSCC by concatenating the Extension Digit of the SSCC and the Serial Reference 389
digits, and treating the result as a single integer. 390

 391

 392
Figure D. How the parts of the decimal SSCC are extracted and rearranged for encoding. 393

2.1.2.3 Serialized Global Location Number (SGLN) 394
The Global Location Number (GLN) is defined by the General EAN.UCC Specifications. 395
A GLN can represent either a discrete, unique physical location such as a dock door or a 396
warehouse slot, or an aggregate physical location such as an entire warehouse. In 397
addition, a GLN can represent a logical entity such as an “organization” that performs a 398
business function such as placing an order. 399

Recognizing these variables, the EPC GLN is meant to apply only to the physical 400
location sub-type of GLN. 401

 The serial number field is reserved and should not be used, until the EAN.UCC 402
community determines the appropriate way, if any, for extending GLN. 403

The SGLN consists of the following information elements: 404

• The Company Prefix, assigned by EAN or UCC to a managing entity. The Company 405
Prefix is the same as the Company Prefix digits within an EAN.UCC GLN decimal 406
code. 407

• The Location Reference, assigned uniquely by the managing entity to an aggregate or 408
specific physical location. 409

• The Serial Number, assigned by the managing entity to an individual unique location. 410

 The serial number should not be used until specified by the EAN.UCC General 411
Specifications . 412

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 16 of 87

 413
Figure E. How the parts of the decimal SGLN are extracted and rearranged for encoding. 414

2.1.2.4 Global Returnable Asset Identifier (GRAI) 415
The Global Returnable Asset Identifier is (GRAI) is defined by the General EAN.UCC 416
Specifications. Unlike the GTIN, the GRAI is already intended for assignment to 417
individual objects and therefore does not require any additional fields to serve as an EPC 418
pure identity. 419

 420

The GRAI consists of the following information elements: 421

• The Company Prefix, assigned by EAN or UCC to a managing entity. The Company 422
Prefix is the same as the Company Prefix digits within an EAN.UCC GRAI decimal 423
code. 424

• The Asset Type, assigned by the managing entity to a particular class of asset. 425

• The Serial Number, assigned by the managing entity to an individual object. The EPC 426
representation is only capable of representing a subset of Serial Numbers allowed in 427
the General EAN.UCC Specifications. Specifically, only those Serial Numbers 428
consisting of one or more digits, with no leading zeros, are permitted [see Appendix F 429
for details]. 430

 431
Figure F. How the parts of the decimal GRAI are extracted and rearranged for encoding. 432

2.1.2.5 Global Individual Asset Identifier (GIAI) 433
The Global Individual Asset Identifier (GIAI) is defined by the General EAN.UCC 434
Specifications. Unlike the GTIN, the GIAI is already intended for assignment to 435
individual objects and therefore does not require any additional fields to serve as an EPC 436
pure identity. 437

 438

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 17 of 87

The GIAI consists of the following information elements: 439

• The Company Prefix, assigned by EAN or UCC to a managing entity. The Company 440
Prefix is the same as the Company Prefix digits within an EAN.UCC GIAI decimal 441
code. 442

• The Individual Asset Reference, assigned uniquely by the managing entity to a 443
specific asset. The EPC representation is only capable of representing a subset of 444
Individual Asset References allowed in the General EAN.UCC Specifications. 445
Specifically, only those Individual Asset References consisting of one or more digits, 446
with no leading zeros, are permitted. 447

 448
Figure G. How the parts of the decimal GIAI are extracted and rearranged for encoding. 449

2.1.3 DoD Identity Type 450
The DoD Construct identifier is defined by the United States Department of Defense. 451

This tag data construct may be used to encode 64-bit and 96-bit Class 0 and Class 1 tags 452
for shipping goods to the United States Department of Defense by a supplier who has 453
already been assigned a CAGE (Commercial and Government Entity) code. 454
At the time of this writing, the details of what information to encode into these fields is 455
explained in a document titled "United States Department of Defense Supplier's Passive 456
RFID Information Guide" that can be obtained at the United States Department of 457
Defense's web site (http://www.dodrfid.org/supplierguide.htm). 458

3 EPC Tag Bit-level Encodings 459
The general structure of EPC encodings on a tag is as a string of bits (i.e., a binary 460
representation), consisting of a tiered, variable length header followed by a series of 461
numeric fields (Figure H) whose overall length, structure, and function are completely 462
determined by the header value. 463

 464

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 18 of 87

3.1 Headers 465
As previously stated, the Header defines the overall length, identity type, and structure of 466
the EPC Tag Encoding, including its Filter Value, if any. The header is of variable length, 467
using a tiered approach in which a zero value in each tier indicates that the header is 468
drawn from the next longer tier. For the encodings defined in this specification, headers 469
are either 2 bits or 8 bits. Given that a zero value is reserved to indicate a header in the 470
next longer tier, the 2-bit header can have 3 possible values (01, 10, and 11, not 00), and 471
the 8-bit header can have 63 possible values (recognizing that the first 2 bits must be 00 472
and 00000000 is reserved to allow headers that are longer than 8 bits). 473

Explanation (non-normative): The tiered scheme is designed to simplify the Header 474
processing required by the Reader in order to determine the tag data format, particularly 475
the location of the Filter Value, while attempting to conserve bits for data values in the 476
64-bit tag. In the not-too-distant future, we expect to be able to “reclaim” the 2-bit tier 477
when 64-bit tags are no longer needed, thereby expanding the 8-bit Header from 63 478
possible values to 255. 479

The assignment of Header values has been designed so that the tag length may be easily 480
discerned by examining the leftmost (or Preamble) bits of the Header. Moreover, the 481
design is aimed at having as few Preambles per tag length as possible, ideally 1 but 482
certainly no more than 2 or 3. This latter objective prompts us to avoid, if it all possible, 483
using those Preambles that allow very few Header values (as noted in italics in Table 1 484
below). The purpose of this Preamble-to-Tag-Length design is so that RFID readers may 485
easily determine a tag’s length. See Appendix B for a detailed discussion of why this is 486
important. 487

The currently assigned Headers are such that a tag may be inferred to be 64 bits if either 488
the first two bits are non-zero or the first five bits are equal to 00001; otherwise, the 489
Header indicates the tag is 96 bits. In the future, unassigned Headers may be assigned for 490
these and other tag lengths. 491

Certain Preambles aren’t currently tied to a particular tag length to leave open the option 492
for additional tag lengths, especially longer ones that can accommodate longer coding 493
schemes such as the Unique ID (UID) being pursued by suppliers to the US Department 494
of Defense. 495

Figure H. The general structure of EPC encodings is as a string of bits, consisting
of a variable length header followed by a series of value fields, whose overall
length, structure, and function are completely determined by the header value.

He ader Numbers

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 19 of 87

Thirteen encoding schemes have been defined in this version of the EPC Tag Data 496
Standard, as shown in Table 1 below. 497

Header Value
(binary)

Tag Length
(bits)

Encoding Scheme

01 64 [Reserved 64-bit scheme]

10 64 SGTIN-64

1100 0000
…
1100 1101

64 [Reserved 64-bit scheme]

1100 1110 64 DoD-64

1100 1111
…
1111 1111

64 [Reserved 64-bit scheme]

0000 0001
0000 001x
0000 01xx

na

na

na

[1 reserved scheme]

[2 reserved schemes]

[4 reserved schemes]

0000 1000 64 SSCC-64

0000 1001 64 GLN-64

0000 1010 64 GRAI-64

0000 1011 64 GIAI-64

0000 1100
…
0000 1111

64 [4 reserved 64-bit schemes]

0001 0000
…
0010 1110

na [31 reserved schemes]

0010 1111 96 DoD-96

0011 0000 96 SGTIN-96

0011 0001 96 SSCC-96

0011 0010 96 GLN-96

0011 0011 96 GRAI-96

0011 0100 96 GIAI-96

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 20 of 87

Header Value
(binary)

Tag Length
(bits)

Encoding Scheme

0011 0101 96 GID-96

0011 0110
…
0011 1111

96 [10 reserved 96-bit schemes]

0000 0000 … [reserved for future headers
longer than 8 bits]

Table 1. Electronic Product Code Headers 498
 499

3.2 Notational Conventions 500
In the remainder of this section, tag-encoding schemes are depicted using the following 501
notation (See Table 2). 502

 Header Filter
Value

Company
Prefix
Index

Item
Reference

Serial
Number

SGTIN-64 2 3 14 20 25

 10

(Binary
value)

(Refer to
Table 5
for
values)

16,383

(Max.
decimal
value)

9 -1,048,575

(Max.
decimal
range*)

33,554,431

(Max.
decimal
value)

*Max. decimal value range of Item Reference field varies with the length of the Company Prefix 503

Table 2. Example of Notation Conventions. 504
 505

The first column of the table gives the formal name for the encoding. The remaining 506
columns specify the layout of each field within the encoding. The field in the leftmost 507
column occupies the most significant bits of the encoding (this is always the header field), 508
and the field in the rightmost column occupies the least significant bits. Each field is a 509
non-negative integer, encoded into binary using a specified number of bits. Any unused 510
bits (i.e., bits not required by a defined field) are explicitly indicated in the table, so that 511
the columns in the table are concatenated with no gaps to form the complete binary 512
encoding. 513

Reading down each column, the table gives the formal name of the field, the number of 514
bits used to encode the field’s value, and the value or range of values for the field. The 515
value may represent one of the following: 516

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 21 of 87

• The value of a binary number indicated by (Binary value), as is the case for the 517
Header field in the example table above 518

• The maximum decimal value indicated by (Max. decimal value) of a fixed length 519
field. This is calculated as 2^n – 1, where n = the fixed number of bits in the field. 520

• A range of maximum decimal values indicated by (Max. decimal range). This 521
range is calculated using the normative rules expressed in the related encoding 522
procedure section 523

• A reference to a table that provides the valid values defined for the field.. 524

In some cases, the number of possible values in one field depends on the specific value 525
assigned to another field. In such cases, a range of maximum decimal values is shown. In 526
the example above, the maximum decimal value for the Item Reference field depends on 527
the length of the Company Prefix field; hence the maximum decimal value is shown as a 528
range. Where a field must contain a specific value (as in the Header field), the last row of 529
the table specifies the specific value rather than the number of possible values. 530

Some encodings have fields that are of variable length. The accompanying text specifies 531
how the field boundaries are determined in those cases. 532

Following an overview of each encoding scheme are a detailed encoding procedure and 533
decoding procedure. The encoding and decoding procedure provide the normative 534
specification for how each type of encoding is to be formed and interpreted. 535

3.3 General Identifier (GID-96) 536
The General Identifier is defined for a 96-bit EPC, and is independent of any existing 537
identity specification or convention. The General Identifier is composed of three fields - 538
the General Manager Number, Object Class and Serial Number. Encodings of the GID 539
include a fourth field, the header, to guarantee uniqueness in the EPC namespace, as 540
shown in Table 3. 541

 542

 Header General
Manager

Number

Object Class Serial Number

8 28 24 36 GID-96

0011 0101
(Binary value)

268,435,455

 (Max. decimal
value)

16,777,215

(Max. decimal
value)

68,719,476,735

 (Max. decimal
value)

Table 3. The General Identifier (GID-96) includes three fields in addition to the header – the 543
General Manager Number, Object class and Serial Number numbers. 544

 545

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 22 of 87

The General Manager Number identifies essentially a company, manager or 546
organization; that is an entity responsible for maintaining the numbers in subsequent 547
fields – Object Class and Serial Number. EPCglobal assigns the General Manager 548
Number to an entity, and ensures that each General Manager Number is unique. 549

The third component is Object Class, and is used by an EPC managing entity to identify a 550
class or “type” of thing. These object class numbers, of course, must be unique within 551
each General Manager Number domain. Examples of Object Classes could include case 552
Stock Keeping Units of consumer-packaged goods and component parts in an assembly. 553

Finally, the Serial Number code, or serial number, is unique within each object class. In 554
other words, the managing entity is responsible for assigning unique – non-repeating 555
serial numbers for every instance within each object class code. 556

3.3.1.1 GID-96 Encoding Procedure 557
The following procedure creates a GID-96 encoding. 558

Given: 559

An General Manager Number M where 0 ≤ M < 228 560

An Object Class C where 0 ≤ C < 224 561

A Serial Number S where 0 ≤ S < 236 562

Procedure: 563

1. Construct the final encoding by concatenating the following bit fields, from most 564
significant to least significant: Header 00110101, General Manager Number M (28 bits), 565
Object Class C (24 bits), Serial Number S (36 bits). 566

3.3.1.2 GID-96 Decoding Procedure 567
Given: 568

A GID-96 as a 96-bit string 00110101b87b86…b0 (where the first eight bits 00110101 are 569
the header) 570

Yields: 571

An General Manager Number 572

An Object Class 573

A Serial Number 574

Procedure: 575

1. Bits b87b86…b60, considered as an unsigned integer, are the General Manager Number. 576

2. Bits b59b58…b36, considered as an unsigned integer, are the Object Class. 577

3. Bits b35b34…b0, considered as an unsigned integer, are the Serial Number. 578

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 23 of 87

3.4 Serialized Global Trade Item Number (SGTIN) 579
The EPC encoding scheme for SGTIN permits the direct embedding of EAN.UCC 580
System standard GTIN and Serial Number codes on EPC tags. In all cases, the check 581
digit is not encoded. Two encoding schemes are specified, SGTIN-64 (64 bits) and 582
SGTIN-96 (96 bits). 583

In the SGTIN-64 encoding, the limited number of bits prohibits a literal embedding of the 584
GTIN. As a partial solution, a Company Prefix Index is used. This Index, which can 585
accommodate up to 16,384 codes, is assigned to companies that need to use the 64 bit 586
tags, in addition to their existing EAN.UCC Company Prefixes. The Index is encoded on 587
the tag instead of the Company Prefix, and is subsequently translated to the Company 588
Prefix at low levels of the EPC system components (i.e. the Reader or Savant). While 589
this means that only a limited number of Company Prefixes can be represented in the 64-590
bit tag, this is a transitional step to full accommodation in 96-bit and additional encoding 591
schemes. The 64-bit company prefix index table can be found at http://www.onsepc.com. 592

3.4.1 SGTIN-64 593
The SGTIN-64 includes five fields – Header, Filter Value, Company Prefix Index, Item 594
Reference, and Serial Number, as shown in Table 4. 595

 596

 Header Filter
Value

Company
Prefix
Index

Item
Reference

Serial
Number

2 3 14 20 25 SGTIN-64

10
(Binary
value)

(Refer to
Table 5
for
values)

16,383

(Max.
decimal
value)

9 -1,048,575

(Max.
decimal
range*)

33,554,431

(Max.
decimal
value)

*Max. decimal value range of Item Reference field varies with the length of the Company Prefix 597

Table 4. The EPC SGTIN-64 bit allocation, header, and maximum decimal values. 598

• Header is 2 bits, with a binary value of 10. 599

• Filter Value is not part of the SGTIN pure identity, but is additional data that is used 600
for fast filtering and pre-selection of basic logistics types. The Filter Values for 64-601
bit and 96-bit SGTIN are the same. The normative specifications for Filter Values 602
are specified in Table 5. The value of 000 means “All Others”. That is, a filter value 603
of 000 means that the object to which the tag is affixed does not match any of the 604
logistic types defined as other filter values in this specification. It should be noted that 605
tags conforming to earlier versions of this specification, in which 000 was the only 606
value approved for use, will have filter value equal to 000 regardless of the logistic 607
types, but following the ratification of this standard, the filter value should be set to 608
match the object to which the tag is affixed, and use 000 only if the filter value for 609

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 24 of 87

such object does not exist in the specification. A Standard Trade Item grouping 610
represents all levels of packaging for logistical units. The Single Shipping / 611
Consumer Trade item type should be used when the individual item is also the 612
logistical unit (e.g. Large screen television, Bicycle). 613

 614

Type Binary Value

All Others 000

Retail Consumer Trade Item 001

Standard Trade Item Grouping 010

Single Shipping/ Consumer Trade Item 011

Reserved 100

Reserved 101

Reserved 110

Reserved 111

Table 5. SGTIN Filter Values . 615
 616

• Company Prefix Index encodes the EAN.UCC Company Prefix. The value of this 617
field is not the Company Prefix itself, but rather an index into a table that provides the 618
Company Prefix as well as an indication of the Company Prefix’s length. The means 619
by which hardware or software may obtain the contents of the translation table is 620
specified in [Translation of 64-bit Tag Encoding Company Prefix Indices Into 621
EAN.UCC Company Prefixes]. 622

• Item Reference encodes the GTIN Item Reference number and Indicator Digit. The 623
Indicator Digit is combined with the Item Reference field in the following manner: 624
Leading zeros on the item reference are significant. Put the Indicator Digit in the 625
leftmost position available within the field. For instance, 00235 is different than 235. 626
With the indicator digit of 1, the combination with 00235 is 100235. The resulting 627
combination is treated as a single integer, and encoded into binary to form the Item 628
Reference field. 629

• Serial Number contains a serial number. The SGTIN-64 encoding is only capable of 630
representing integer-valued serial numbers with limited range. Other EAN.UCC 631
specifications permit a broader range of serial numbers. In particular, the EAN-128 632
barcode symbology provides for a 20-character alphanumeric serial number to be 633
associated with a GTIN using Application Identifier (AI) 21 [EANUCCGS]. It is 634
possible to convert between the serial numbers in the SGTIN-64 tag encoding and the 635
serial numbers in AI 21 barcodes under certain conditions. Specifically, such 636
interconversion is possible when the alphanumeric serial number in AI 21 happens to 637
consist only of digit characters, with no leading zeros, and whose value when 638

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 25 of 87

interpreted as an integer falls within the range limitations of the SGTIN-64 tag 639
encoding. These considerations are reflected in the encoding and decoding 640
procedures below. 641

3.4.1.1 SGTIN-64 Encoding Procedure 642
The following procedure creates an SGTIN-64 encoding. 643

Given: 644

• An EAN.UCC GTIN-14 consisting of digits d1d2…d14 645

• The length L of the company prefix portion of the GTIN 646

• A Serial Number S where 0 ≤ S < 225, or an UCC/EAN-128 Application Identifier 21 647
consisting of characters s1s2…sK. 648

• A Filter Value F where 0 ≤ F < 8 649

Procedure: 650

1. Extract the EAN.UCC Company Prefix d2d3…d(L+1) 651

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table 652
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not 653
found in the Company Prefix Translation Table, stop: this GTIN cannot be encoded in the 654
SGTIN-64 encoding. 655

3. Construct the Item Reference + Indicator Digit by concatenating digits 656
d1d(L+2)d(L+3)…d13 and considering the result to be a decimal integer, I. If I ≥ 220, stop: 657
this GTIN cannot be encoded in the SGTIN-64 encoding. 658

4. When the Serial Number is provided directly as an integer S where 0 ≤ S < 225, 659
proceed to Step 5. Otherwise, when the Serial Number is provided as an UCC/EAN-128 660
Application Identifier 21 consisting of characters s1s2…sK, construct the Serial Number 661
by concatenating digits s1s2…sK. If any of these characters is not a digit, stop: this Serial 662
Number cannot be encoded in the SGTIN-64 encoding. Also, if K > 1 and s1 = 0, stop: 663
this Serial Number cannot be encoded in the SGTIN-64 encoding (because leading zeros 664
are not permitted except in the case where the Serial Number consists of a single zero 665
digit). Otherwise, consider the result to be a decimal integer, S. If S ≥ 225, stop: this 666
Serial Number cannot be encoded in the SGTIN-64 encoding. 667

5. Construct the final encoding by concatenating the following bit fields, from most 668
significant to least significant: Header 10 (2 bits), Filter Value F (3 bits), Company 669
Prefix Index C from Step 2 (14 bits), Item Reference from Step 3 (20 bits), Serial 670
Number S from Step 4 (25 bits). 671

3.4.1.2 SGTIN-64 Decoding Procedure 672
Given: 673

• An SGTIN-64 as a 64-bit bit string 10b61b60…b0 (where the first two bits 10 are the 674
header) 675

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 26 of 87

Yields: 676

• An EAN.UCC GTIN-14 677

• A Serial Number 678

• A Filter Value 679

Procedure: 680

1. Bits b61b60b59, considered as an unsigned integer, are the Filter Value. 681

2. Extract the Company Prefix Index C by considering bits b58b57…b45 as an unsigned 682
integer. 683

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to 684
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value 685
of L is also obtained from the table). If the Company Prefix Index C is not found in the 686
Company Prefix Translation Table, stop: this bit string cannot be decoded as an SGTIN-687
64. 688

4. Consider bits b44b43…b25 as an unsigned integer. If this integer is greater than or 689
equal to 10(13-L), stop: the input bit string is not a legal SGTIN-64 encoding. Otherwise, 690
convert this integer to a (13-L)-digit decimal number i1i2…i(13-L), adding leading zeros as 691
necessary to make (13-L) digits. 692

5. Construct a 13-digit number d1d2…d13 where d1 = i1 from Step 4, d2d3…d(L+1) = 693
p1p2…pL from Step 3, and d(L+2)d(L+3)…d13 = i2 i3…i(13-L) from Step 4. 694

6. Calculate the check digit d14 = (–3(d1 + d3 + d5 + d7 + d9 + d11 + d13) – (d2 + d4 + d6 + 695
d8 + d10 + d12)) mod 10. 696

7. The EAN.UCC GTIN-14 is the concatenation of digits from Steps 5 and 6: d1d2…d14. 697

8. Bits b24b23…b0, considered as an unsigned integer, are the Serial Number. 698

9. (Optional) If it is desired to represent the serial number as a UCC/EAN-128 699
Application Identifier 21, convert the integer from Step 8 to a decimal string with no 700
leading zeros. If the integer in Step 8 is zero, convert it to a string consisting of the single 701
character “0”. 702

3.4.2 SGTIN-96 703
In addition to a Header, the SGTIN-96 is composed of five fields: the Filter Value, 704
Partition, Company Prefix, Item Reference, and Serial Number, as shown in Table 6. 705

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 27 of 87

*Max. decimal value range of Company Prefix and Item Reference fields vary according to the contents of 706
the Partition field. 707

Table 6. The EPC SGTIN-96 bit allocation, header, and maximum decimal values. 708

• Header is 8-bits, with a binary value of 0011 0000. 709

• Filter Value is not part of the GTIN or EPC identifier, but is used for fast filtering and 710
pre-selection of basic logistics types. The Filter Values for 64-bit and 96-bit GTIN 711
are the same. See Table 5. 712

• Partition is an indication of where the subsequent Company Prefix and Item 713
Reference numbers are divided. This organization matches the structure in the 714
EAN.UCC GTIN in which the Company Prefix added to the Item Reference number 715
(plus the single Indicator Digit) totals 13 digits, yet the Company Prefix may vary 716
from 6 to 12 digits and the Item Reference (including the single Indicator Digit) from 717
7 to 1 digit(s). The available values of Partition and the corresponding sizes of the 718
Company Prefix and Item Reference fields are defined in Table 7. 719

• Company Prefix contains a literal embedding of the EAN.UCC Company Prefix. 720

• Item Reference contains a literal embedding of the GTIN Item Reference number. 721
The Indicator Digit is combined with the Item Reference field in the following 722
manner: Leading zeros on the item reference are significant. Put the Indicator Digit in 723
the leftmost position available within the field. For instance, 00235 is different than 724
235. With the indicator digit of 1, the combination with 00235 is 100235. The 725
resulting combination is treated as a single integer, and encoded into binary to form 726
the Item Reference field. 727

• Serial Number contains a serial number. The SGTIN-96 encoding is only capable of 728
representing integer-valued serial numbers with limited range. Other EAN.UCC 729
specifications permit a broader range of serial numbers. In particular, the EAN-128 730
barcode symbology provides for a 20-character alphanumeric serial number to be 731
associated with a GTIN using Application Identifier (AI) 21 [EANUCCGS]. It is 732
possible to convert between the serial numbers in the SGTIN-96 tag encoding and the 733
serial numbers in AI 21 barcodes under certain conditions. Specifically, such 734
interconversion is possible when the alphanumeric serial number in AI 21 happens to 735

 Header Filter
Value

Partition Company
Prefix

Item
Reference

Serial
Number

8 3 3 20-40 24-4 38 SGTIN-96

0011
0000
(Binary
value)

(Refer to
Table 5
for
values)

(Refer to
Table 7
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

9,999,999
– 9

(Max.
decimal
range*)

274,877,906
,943

(Max.
decimal
value)

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 28 of 87

consist only of digit characters, with no leading zeros, and whose value when 736
interpreted as an integer falls within the range limitations of the SGTIN-96 tag 737
encoding. These considerations are reflected in the encoding and decoding 738
procedures below. 739

 740

Partition
Value

(P)

Company Prefix Item Reference
and Indicator Digit

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 4 1

1 37 11 7 2

2 34 10 10 3

3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

6 20 6 24 7

• Table 7. SGTIN-96 Partitions. 741

3.4.2.1 SGTIN-96 Encoding Procedure 742
The following procedure creates an SGTIN-96 encoding. 743

Given: 744

• An EAN.UCC GTIN-14 consisting of digits d1d2…d14 745

• The length L of the Company Prefix portion of the GTIN 746

• A Serial Number S where 0 ≤ S < 238, or an UCC/EAN-128 Application Identifier 21 747
consisting of characters s1s2…sK. 748

• A Filter Value F where 0 ≤ F < 8 749

Procedure: 750

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column 751
of the Partition Table (Table 7) to determine the Partition Value, P, the number of bits M 752
in the Company Prefix field, and the number of bits N in the Item Reference and 753
Indicator Digit field. If L is not found in any row of Table 7, stop: this GTIN cannot be 754
encoded in an SGTIN-96. 755

2. Construct the Company Prefix by concatenating digits d2d3…d(L+1) and considering 756
the result to be a decimal integer, C. 757

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 29 of 87

3. Construct the Item Reference + Indicator Digit by concatenating digits 758
d1d(L+2)d(L+3)…d13 and considering the result to be a decimal integer, I. 759

4. When the Serial Number is provided directly as an integer S where 0 ≤ S < 238, 760
proceed to Step 5. Otherwise, when the Serial Number is provided as an UCC/EAN-128 761
Application Identifier 21 consisting of characters s1s2…sK, construct the Serial Number 762
by concatenating digits s1s2…sK. If any of these characters is not a digit, stop: this Serial 763
Number cannot be encoded in the SGTIN-96 encoding. Also, if K > 1 and s1 = 0, stop: 764
this Serial Number cannot be encoded in the SGTIN-96 encoding (because leading zeros 765
are not permitted except in the case where the Serial Number consists of a single zero 766
digit). Otherwise, consider the result to be a decimal integer, S. If S ≥ 238, stop: this 767
Serial Number cannot be encoded in the SGTIN-96 encoding. 768

5. Construct the final encoding by concatenating the following bit fields, from most 769
significant to least significant: Header 00110000 (8 bits), Filter Value F (3 bits), 770
Partition Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Item 771
Reference from Step 3 (N bits), Serial Number S from Step 4 (38 bits). Note that M+N = 772
44 bits for all P. 773

3.4.2.2 SGTIN-96 Decoding Procedure 774
Given: 775

• An SGTIN-96 as a 96-bit bit string 00110000b87b86…b0 (where the first eight bits 776
00110000 are the header) 777

Yields: 778

• An EAN.UCC GTIN-14 779

• A Serial Number 780

• A Filter Value 781

Procedure: 782

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value. 783

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If 784
P = 7, stop: this bit string cannot be decoded as an SGTIN-96. 785

3. Look up the Partition Value P in Table 7 to obtain the number of bits M in the 786
Company Prefix and the number of digits L in the Company Prefix. 787

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned 788
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a 789
legal SGTIN-96 encoding. Otherwise, convert this integer into a decimal number 790
p1p2…pL, adding leading zeros as necessary to make up L digits in total. 791

5. Extract the Item Reference and Indicator by considering bits b(81-M) b(80-M)…b38 as an 792
unsigned integer. If this integer is greater than or equal to 10(13-L), stop: the input bit 793
string is not a legal SGTIN-96 encoding. Otherwise, convert this integer to a (13-L)-digit 794
decimal number i1i2…i(13-L), adding leading zeros as necessary to make (13-L) digits. 795

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 30 of 87

6. Construct a 13-digit number d1d2…d13 where d1 = i1 from Step 5, d2d3…d(L+1) = 796
p1p2…pL from Step 4, and d(L+2)d(L+3)…d13 = i2 i3…i(13-L) from Step 5. 797

7. Calculate the check digit d14 = (–3(d1 + d3 + d5 + d7 + d9 + d11 + d13) – (d2 + d4 + d6 + 798
d8 + d10 + d12)) mod 10. 799

8. The EAN.UCC GTIN-14 is the concatenation of digits from Steps 6 and 7: d1d2…d14. 800

9. Bits b37b36…b0, considered as an unsigned integer, are the Serial Number. 801

10. (Optional) If it is desired to represent the serial number as a UCC/EAN-128 802
Application Identifier 21, convert the integer from Step 9 to a decimal string with no 803
leading zeros. If the integer in Step 9 is zero, convert it to a string consisting of the single 804
character “0”. 805

3.5 Serial Shipping Container Code (SSCC) 806
The EPC encoding scheme for SSCC permits the direct embedding of EAN.UCC System 807
standard SSCC codes on EPC tags. In all cases, the check digit is not encoded. Two 808
encoding schemes are specified, SSCC-64 (64 bits) and SSCC-96 (96 bits). 809

In the 64-bit EPC, the limited number of bits prohibits a literal embedding of the 810
EAN.UCC Company Prefix. As a partial solution, a Company Prefix Index is used. This 811
Index, which can accommodate up to 16,384 codes, is assigned to companies that need to 812
use the 64 bit tags, in addition to their existing Company Prefixes. The Index is encoded 813
on the tag instead of the Company Prefix, and is subsequently translated to the Company 814
Prefix at low levels of the EPC system components (i.e. the Reader or Savant). While 815
this means a limited number of Company Prefixes can be represented in the 64-bit tag, 816
this is a transitional step to full accommodation in 96-bit and additional encoding 817
schemes. 818

3.5.1 SSCC-64 819
In addition to a Header, the EPC SSCC-64 is composed of three fields: the Filter Value, 820
Company Prefix Index, and Serial Reference, as shown in Table 8. 821

 Header Filter
Value

Company
Prefix
Index

Serial Reference

8 3 14 39 SSCC-64

0000
1000
(Binary
value)

(Refer to
Table 9
for
values)

16,383

(Max.
decimal
value)

99,999 -
99,999,999,999
(Max. decimal
range*)

*Max. decimal value range of Serial Reference field varies with the length of the Company Prefix 822

Table 8. The EPC 64-bit SSCC bit allocation, header, and maximum decimal values. 823

• Header is 8-bits, with a binary value of 0000 1000. 824

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 31 of 87

• Filter Value is not part of the SSCC or EPC identifier, but is used for fast filtering and 825
pre-selection of basic logistics types, such as cases and pallets. The Filter Values for 826
64-bit and 96-bit SSCC are the same. The normative specifications for Filter Values 827
are specified in Table 9. The value of 000 means “All Others”. That is, a filter value 828
of 000 means that the object to which the tag is affixed does not match any of the 829
logistic types defined as other filter values in this specification. It should be noted that 830
tags conforming to earlier versions of this specification, in which 000 was the only 831
value approved for use, will have filter value equal to 000 regardless of the logistic 832
types, but following the ratification of this standard, the filter value should be set to 833
match the object to which the tag is affixed, and use 000 only if the filter value for 834
such object does not exist in the specification. 835

Type Binary Value

All Others 000

Undefined 001

Logistical / Shipping Unit 010

Reserved 011

Reserved 100

Reserved 101

Reserved 110

Reserved 111

Table 9. SSCC Filter Values 836

• Company Prefix Index encodes the EAN.UCC Company Prefix. The value of this 837
field is not the Company Prefix itself, but rather an index into a table that provides the 838
Company Prefix as well as an indication of the Company Prefix’s length. The means 839
by which hardware or software may obtain the contents of the translation table is 840
specified in [Translation of 64-bit Tag Encoding Company Prefix Indices Into 841
EAN.UCC Company Prefixes]. 842

• Serial Reference is a unique number for each instance, comprised of the Serial 843
Reference and the Extension digit. The Extension Digit is combined with the Serial 844
Reference field in the following manner: Leading zeros on the Serial Reference are 845
significant. Put the Extension Digit in the leftmost position available within the field. 846
For instance, 000042235 is different than 42235. With the extension digit of 1, the 847
combination with 000042235 is 1000042235. The resulting combination is treated as 848
a single integer, and encoded into binary to form the Serial Reference field. To avoid 849

unmanageably large and out-of-specification serial references, they should not exceed the 850
capacity specified in EAN.UCC specifications, which are (inclusive of extension digit) 851
9,999 for company prefixes of 12 digits up to 9,999,999,999 for company prefixes of 6 852
digits. 853

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 32 of 87

3.5.1.1 SSCC-64 Encoding Procedure 854
The following procedure creates an SSCC-64 encoding. 855

Given: 856

• An EAN.UCC SSCC consisting of digits d1d2…d18 857

• The length L of the company prefix portion of the SSCC 858

• A Filter Value F where 0 ≤ F < 8 859

Procedure: 860

1. Extract the EAN.UCC Company Prefix d2d3…d(L+1) 861

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table 862
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not 863
found in the Company Prefix Translation Table, stop: this SSCC cannot be encoded in 864
the SSCC-64 encoding. 865

3. Construct the Serial Reference + Extension Digit by concatenating digits d1d 866
(L+2)d(L+3)…d17 and considering the result to be a decimal integer, I. If I ≥ 239, stop: this 867
SSCC cannot be encoded in the SSCC-64 encoding. 868

4. Construct the final encoding by concatenating the following bit fields, from most 869
significant to least significant: Header 00001000 (8 bits), Filter Value F (3 bits), 870
Company Prefix Index C from Step 2 (14 bits), Serial Reference from Step 3 (39 bits). 871

3.5.1.2 SSCC-64 Decoding Procedure 872
Given: 873

• An SSCC-64 as a 64-bit bit string 00001000b55b54…b0 (where the first eight bits 874
00001000 are the header) 875

Yields: 876

• An EAN.UCC SSCC 877

• A Filter Value 878

Procedure: 879

1. Bits b55b54b53, considered as an unsigned integer, are the Filter Value. 880

2. Extract the Company Prefix Index C by considering bits b52b51…b39 as an unsigned 881
integer. 882

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to 883
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value 884
of L is also obtained from the table). If the Company Prefix Index C is not found in the 885
Company Prefix Translation Table, stop: this bit string cannot be decoded as an SSCC-886
64. 887

4. Consider bits b38b37…b0 as an unsigned integer. If this integer is greater than or equal 888
to 10(17-L), stop: the input bit string is not a legal SSCC-64 encoding. Otherwise, convert 889

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 33 of 87

this integer to a (17-L)-digit decimal number i1i2…i(17-L), adding leading zeros as 890
necessary to make (17-L) digits. 891

5. Construct a 17-digit number d1d2…d17 where d1 = s1 from Step 4, d2d3…d(L+1) = 892
p1p2…pL from Step 3, and d(L+2)d(L+3)…d17 = i2 i3…i(17-L) from Step 4. 893

6. Calculate the check digit d18 = (–3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) – (d2 + 894
d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10. 895

7. The EAN.UCC SSCC is the concatenation of digits from Steps 5 and 6: d1d2…d18. 896

3.5.2 SSCC-96 897
In addition to a Header, the EPC SSCC-96 is composed of four fields: the Filter Value, 898
Partition, Company Prefix, and Serial Reference, as shown in Table 10. 899

*Max. decimal value range of Company Prefix and Serial Reference fields vary according to the contents of 900
the Partition field. 901

Table 10. The EPC 96-bit SSCC bit allocation, header, and maximum decimal values. 902

• Header is 8-bits, with a binary value of 0011 0001. 903

• Filter Value is not part of the SSCC or EPC identifier, but is used for fast filtering and 904
pre-selection of basic logistics types. The Filter Values for 64-bit and 96-bit SSCC 905
are the same. See Table 9. 906

• The Partition is an indication of where the subsequent Company Prefix and Serial 907
Reference numbers are divided. This organization matches the structure in the 908
EAN.UCC SSCC in which the Company Prefix added to the Serial Reference number 909
(including the single Extension Digit) totals 17 digits, yet the Company Prefix may 910
vary from 6 to 12 digits and the Serial Reference from 11 to 5 digit(s). Table 11 911
shows allowed values of the partition value and the corresponding lengths of the 912
company prefix and serial reference. 913

 914

 915

 Header Filter
Value

Partition Company
Prefix

Serial
Reference

Unallocated

8 3 3 20-40 38-18 24 SSCC-96

0011
0001
(Binary
value)

(Refer to
Table 9
for
values)

(Refer to
Table 11
for
values)

999,999 –
999,999,99
9,999

(Max.
decimal
range*)

99,999,999
,999 –
99,999

(Max.
decimal
range*)

[Not Used]

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 34 of 87

Partition
Value

(P)

Company Prefix Serial Reference
and Extension

Digit

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

2 34 10 24 7

3 30 9 28 8

4 27 8 31 9

5 24 7 34 10

6 20 6 38 11

Table 11. SSCC-96 Partitions. 916

• Company Prefix contains a literal embedding of the Company Prefix. 917

• Serial Reference is a unique number for each instance, comprised of the Serial 918
Reference and the Extension digit. The Extension Digit is combined with the Serial 919
Reference field in the following manner: Leading zeros on the Serial Reference are 920
significant. Put the Extension Digit in the leftmost position available within the field. 921
For instance, 000042235 is different than 42235. With the extension digit of 1, the 922
combination with 000042235 is 1000042235. The resulting combination is treated as 923
a single integer, and encoded into binary to form the Serial Reference field. To avoid 924
unmanageably large and out-of-specification serial references, they should not exceed 925
the capacity specified in EAN.UCC specifications, which are (inclusive of extension 926
digit) 9,999 for company prefixes of 12 digits up to 9,999,999,999 for company 927
prefixes of 6 digits. 928

• Unallocated is not used. This field must contain zeros to conform with this version of 929
the specification. 930

3.5.2.1 SSCC-96 Encoding Procedure 931
The following procedure creates an SSCC-96 encoding. 932

Given: 933

• An EAN.UCC SSCC consisting of digits d1d2…d18 934

• The length L of the Company Prefix portion of the SSCC 935

• A Filter Value F where 0 ≤ F < 8 936

Procedure: 937

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column 938
of the Partition Table (Table 11) to determine the Partition Value, P, the number of bits 939

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 35 of 87

M in the Company Prefix field, and the number of bits N in the Serial Reference and 940
Extension Digit field. If L is not found in any row of Table 11, stop: this SSCC cannot 941
be encoded in an SSCC-96. 942

2. Construct the Company Prefix by concatenating digits d2d3…d(L+1) and considering 943
the result to be a decimal integer, C. 944

3. Construct the Serial Reference + Extension Digit by concatenating digits 945
d1d(L+2)d(L+3)…d17 and considering the result to be a decimal integer, S. 946

4. Construct the final encoding by concatenating the following bit fields, from most 947
significant to least significant: Header 00110001 (8 bits), Filter Value F (3 bits), 948
Partition Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Serial 949
Reference S from Step 3 (N bits), and 24 zero bits. Note that M+N = 58 bits for all P. 950

3.5.2.2 SSCC-96 Decoding Procedure 951
Given: 952

• An SSCC-96 as a 96-bit bit string 00110001b87b86…b0 (where the first eight bits 953
00110001 are the header) 954

Yields: 955

• An EAN.UCC SSCC 956

• A Filter Value 957

Procedure: 958

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value. 959

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If 960
P = 7, stop: this bit string cannot be decoded as an SSCC-96. 961

3. Look up the Partition Value P in Table 11 to obtain the number of bits M in the 962
Company Prefix and the number of digits L in the Company Prefix. 963

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned 964
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a 965
legal SSCC-96 encoding. Otherwise, convert this integer into a decimal number 966
p1p2…pL, adding leading zeros as necessary to make up L digits in total. 967

5. Extract the Serial Reference by considering bits b(81-M) b(80-M)…b24 as an unsigned 968
integer. If this integer is greater than or equal to 10(17-L), stop: the input bit string is not a 969
legal SSCC-96 encoding. Otherwise, convert this integer to a (17-L)-digit decimal 970
number i1i2…i(17-L), adding leading zeros as necessary to make (17-L) digits. 971

6. Construct a 17-digit number d1d2…d17 where d1 = s1 from Step 5, d2d3…d(L+1) = 972
p1p2…pL from Step 4, and d(L+2)d(L+3)…d17 = i2 i3…i(17-L) from Step 5. 973

7. Calculate the check digit d18 = (–3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) – (d2 + 974
d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10. 975

8. The EAN.UCC SSCC is the concatenation of digits from Steps 6 and 7: d1d2…d18. 976

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 36 of 87

3.6 Serialized Global Location Number (SGLN) 977
The EPC encoding scheme for GLN permits the direct embedding of EAN.UCC System 978
standard GLN on EPC tags. The serial number field is not used. In all cases the check 979
digit is not encoded. Two encoding schemes are specified, SGLN-64 (64 bits) and 980
SGLN-96 (96 bits). 981

In the SGLN-64 encoding, the limited number of bits prohibits a literal embedding of the 982
GLN. As a partial solution, a Company Prefix Index is used. This index, which can 983
accommodate up to 16,384 codes, is assigned to companies that need to use the 64 bit 984
tags, in addition to their existing EAN.UCC Company Prefixes. The index is encoded on 985
the tag instead of the Company Prefix, and is subsequently translated to the Company 986
Prefix at low levels of the EPC system components (i.e. the Reader or Savant). 987

While this means a limited number of Company Prefixes can be represented in the 64-bit 988
tag, this is a transitional step to full accommodation in 96-bit and additional encoding 989
schemes. 990

3.6.1 SGLN-64 991
The SGLN-64 includes four fields in addition to the header – Filter Value, Company 992
Prefix Index, Location Reference, and Serial Number, as shown in Table 12. 993

 994

 Header Filter
Value

Company
Prefix
Index

Location
Reference

Serial
Number

8 3 14 20 19 SGLN-64

0000
1001
(Binary
value)

(Refer to
Table 13
for
values)

16,383

(Max.
decimal
value)

999,999 -
0

(Max.
decimal
range*)

524,288

(Max.
decimal
value)
[Not Used]

*Max. decimal value range of Location Reference field varies with the length of the Company Prefix 995

Table 12. The EPC SGLN-64 bit allocation, header, and maximum decimal values. 996
 997

• Header is 8 bits, with a binary value of 0000 1001. 998

• Filter Value is not part of the SGLN pure identity, but is additional data that is used 999
for fast filtering and pre-selection of basic location types. The Filter Values for 64-bit 1000
and 96-bit SGLN are the same. See Table 13 for currently defined filter values. 1001

• Company Prefix Index encodes the EAN.UCC Company Prefix. The value of this 1002
field is not the Company Prefix itself, but rather an index into a table that provides the 1003

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 37 of 87

Company Prefix as well as an indication of the Company Prefix’s length. The means 1004
by which hardware or software may obtain the contents of the translation table is 1005
specified in [Translation of 64-bit Tag Encoding Company Prefix Indices Into 1006
EAN.UCC Company Prefixes]. 1007

• Location Reference encodes the GLN Location Reference number. 1008

• Serial Number contains a serial number. Note: The serial number field is reserved and 1009
should not be used, until the EAN.UCC community determines the appropriate way, 1010
if any, for extending GLN. 1011

 1012

Type Binary Value

All Others 000

Reserved 001

Reserved 010

Reserved 011

Reserved 100

Reserved 101

Reserved 110

Reserved 111

Table 13. SGLN Filter Values . 1013

3.6.1.1 SGLN-64 Encoding Procedure 1014
The following procedure creates an SGLN-64 encoding. 1015

Given: 1016

• An EAN.UCC GLN consisting of digits d1d2…d13 1017

• The length L of the company prefix portion of the GLN 1018

• A Serial Number S where 0 ≤ S < 219 1019

• A Filter Value F where 0 ≤ F < 8 1020

Procedure: 1021

1. Extract the EAN.UCC Company Prefix d1d2…dL 1022

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table 1023
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not 1024
found in the Company Prefix Translation Table, stop: this GLN cannot be encoded in the 1025
SGLN-64 encoding. 1026

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 38 of 87

3. Construct the Location Reference by concatenating digits d(L+1)d(L+2)…d12 and 1027
considering the result to be a decimal integer, I. If I ≥ 220, stop: this GLN cannot be 1028
encoded in the SGLN-64 encoding. 1029

4. Construct the final encoding by concatenating the following bit fields, from most 1030
significant to least significant: Header 00001001 (8 bits), Filter Value F (3 bits), 1031
Company Prefix Index C from Step 2 (14 bits), Location Reference from Step 3 (20 bits), 1032
Serial Number S (19 bits). 1033

3.6.1.2 SGLN-64 Decoding Procedure 1034
Given: 1035

• An SGLN-64 as a 64-bit bit string 00001001b55b54…b0 (where the first eight bits 1036
00001001 are the header) 1037

Yields: 1038

• An EAN.UCC GLN 1039

• A Serial Number 1040

• A Filter Value 1041

Procedure: 1042

1. Bits b55b54b53, considered as an unsigned integer, are the Filter Value. 1043

2. Extract the Company Prefix Index C by considering bits b52b51…b39 as an unsigned 1044
integer. 1045

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to 1046
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value 1047
of L is also obtained from the table). If the Company Prefix Index C is not found in the 1048
Company Prefix Translation Table, stop: this bit string cannot be decoded as an SGLN-1049
64. 1050

4. Consider bits b38b37…b19 as an unsigned integer. If this integer is greater than or 1051
equal to 10(12-L), stop: the input bit string is not a legal SGLN-64 encoding. Otherwise, 1052
convert this integer to a (12−L)-digit decimal number i1i2…i(12-L), adding leading zeros as 1053
necessary to make (12−L) digits. 1054

5. Construct a 12-digit number d1d2…d12 where d1d2…dL = p1p2…pL from Step 3, and 1055
d(L+1)d(L+2)…d12 = i1 i2…i(12-L) from Step 4. 1056

6. Calculate the check digit d13 = (–3(d2 + d4 + d6 + d8 + d10 + d12) – (d1 + d3 + d5 + d7 + 1057
d9 + d11)) mod 10. 1058

7. The EAN.UCC GLN is the concatenation of digits from Steps 5 and 6: d1d2…d13. 1059

8. Bits b18b17…b0, considered as an unsigned integer, are the Serial Number. 1060

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 39 of 87

3.6.2 SGLN-96 1061
In addition to a Header, the SGLN-96 is composed of five fields: the Filter Value, 1062
Partition, Company Prefix, Location Reference, and Serial Number, as shown in Table 14. 1063

• Header is 8-bits, with a binary value of 0011 0010. 1064

• Filter Value is not part of the GLN or EPC identifier, but is used for fast filtering and 1065
pre-selection of basic location types. The Filter Values for 64-bit and 96-bit GLN are 1066
the same. See Table 13. 1067

• Partition is an indication of where the subsequent Company Prefix and Location 1068
Reference numbers are divided. This organization matches the structure in the 1069
EAN.UCC GLN in which the Company Prefix added to the Location Reference 1070
number totals 12 digits, yet the Company Prefix may vary from 6 to 12 digits and the 1071
Location Reference number from 6 to 0 digit(s). The available values of Partition and 1072
the corresponding sizes of the Company Prefix and Location Reference fields are 1073
defined in Table 15. 1074

 1075

*Max. decimal value range of Company Prefix and Location Reference fields vary according to contents of 1076
the Partition field. 1077

Table 14. The EPC SGLN-96 bit allocation, header, and maximum decimal values. 1078
 1079

• Company Prefix contains a literal embedding of the EAN.UCC Company Prefix. 1080

• Location Reference encodes the GLN Location Reference number. 1081

• Serial Number contains a serial number. Note: The serial number field is reserved and 1082
should not be used, until the EAN.UCC community determines the appropriate way, 1083
if any, for extending GLN. 1084

 1085

 Header Filter
Value

Partition Company
Prefix

Location
Reference

Serial
Number

8 3 3 20-40 21-1 41 SGLN-96

0011
0010
(Binary
value)

(Refer to
Table 13
for
values)

(Refer to
Table 15
for
values)

999,999 –
999,999,99
9,999

(Max.
decimal
range*)

999,999 –
0

(Max.
decimal
range*)

2,199,023,255
,551

(Max. decimal
value)

[Not Used]

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 40 of 87

Partition
Value
(P)

Company Prefix Location Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

Table 15. SGLN-96 Partitions. 1086

3.6.2.1 SGLN-96 Encoding Procedure 1087
The following procedure creates an SGLN-96 encoding. 1088

Given: 1089

• An EAN.UCC GLN consisting of digits d1d2…d13 1090

• The length L of the Company Prefix portion of the GLN 1091

• A Serial Number S where 0 ≤ S < 241 1092

• A Filter Value F where 0 ≤ F < 8 1093

Procedure: 1094

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column 1095
of the Partition Table (Table 15) to determine the Partition Value, P, the number of bits 1096
M in the Company Prefix field, and the number of bits N in the Location Reference field. 1097
If L is not found in any row of Table 15, stop: this GLN cannot be encoded in an SGLN-1098
96. 1099

2. Construct the Company Prefix by concatenating digits d1d2…dL and considering the 1100
result to be a decimal integer, C. 1101

3. Construct the Location Reference by concatenating digits d(L+1)d(L+2)…d12 and 1102
considering the result to be a decimal integer, I. 1103

4. Construct the final encoding by concatenating the following bit fields, from most 1104
significant to least significant: Header 00110010 (8 bits), Filter Value F (3 bits), 1105
Partition Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Location 1106
Reference from Step 3 (N bits), Serial Number S (41 bits). Note that M+N = 41 bits for 1107
all P. 1108

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 41 of 87

3.6.2.2 SGLN-96 Decoding Procedure 1109
Given: 1110

• An SGLN-96 as a 96-bit bit string 00110010b87b86…b0 (where the first eight bits 1111
00110010 are the header) 1112

Yields: 1113

• An EAN.UCC GLN 1114

• A Serial Number 1115

• A Filter Value 1116

Procedure: 1117

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value. 1118

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If 1119
P = 7, stop: this bit string cannot be decoded as an SGLN-96. 1120

3. Look up the Partition Value P in Table 15 to obtain the number of bits M in the 1121
Company Prefix and the number of digits L in the Company Prefix. 1122

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned 1123
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a 1124
legal SGLN-96 encoding. Otherwise, convert this integer into a decimal number 1125
p1p2…pL, adding leading zeros as necessary to make up L digits in total. 1126

5. Extract the Location Reference by considering bits b(81-M) b(80-M)…b41 as an unsigned 1127
integer. If this integer is greater than or equal to 10(12-L), stop: the input bit string is not a 1128
legal SGLN-96 encoding. Otherwise, convert this integer to a (12−L)-digit decimal 1129
number i1i2…i(12-L), adding leading zeros as necessary to make (12−L) digits. 1130

6. Construct a 12-digit number d1d2…d12 where d1d2…dL = p1p2…pL from Step 4, and 1131
d(L+1)d(L+2)…d12 = i2 i3…i(12-L) from Step 5. 1132

7. Calculate the check digit d13 = (–3(d2 + d4 + d6 + d8 + d10 + d12) – (d1+ d3 + d5 + d7 + 1133
d9 + d11)) mod 10. 1134

8. The EAN.UCC GLN is the concatenation of digits from Steps 6 and 7: d1d2…d13. 1135

9. Bits b40b39…b0, considered as an unsigned integer, are the Serial Number. 1136

3.7 Global Returnable Asset Identifier (GRAI) 1137
The EPC encoding scheme for GRAI permits the direct embedding of EAN.UCC System 1138
standard GRAI on EPC tags. In all cases, the check digit is not encoded. Two encoding 1139
schemes are specified, GRAI-64 (64 bits) and GRAI-96 (96 bits). 1140

In the GRAI-64 encoding, the limited number of bits prohibits a literal embedding of the 1141
GRAI. As a partial solution, a Company Prefix Index is used. This Index, which can 1142
accommodate up to 16,384 codes, is assigned to companies that need to use the 64 bit 1143
tags, in addition to their existing EAN.UCC Company Prefixes. The Index is encoded on 1144
the tag instead of the Company Prefix, and is subsequently translated to the Company 1145

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 42 of 87

Prefix at low levels of the EPC system components (i.e. the Reader or Savant). While 1146
this means that only a limited number of Company Prefixes can be represented in the 64-1147
bit tag, this is a transitional step to full accommodation in 96-bit and additional encoding 1148
schemes. 1149

3.7.1 GRAI-64 1150
The GRAI-64 includes four fields in addition to the Header – Filter Value, Company 1151
Prefix Index, Asset Type, and Serial Number, as shown in Table 16. 1152

 1153

 Header Filter
Value

Company
Prefix
Index

Asset
Type

Serial
Number

8 3 14 20 19 GRAI-64

0000
1010
(Binary
value)

(Refer to
Table 17
for
values)

16,383

(Max.
decimal
value)

999,999 -
0

(Max.
decimal
range*)

524,287

(Max.
decimal
value)

*Max. decimal value range of Asset Type field varies with Company Prefix. 1154

Table 16. The EPC GRAI-64 bit allocation, header, and maximum decimal values. 1155
 1156

• Header is 8 bits, with a binary value of 0000 1010. 1157

• Filter Value is not part of the GRAI pure identity, but is additional data that is used 1158
for fast filtering and pre-selection of basic asset types. The Filter Values for 64-bit 1159
and 96-bit GRAI are the same. See Table 17 for currently defined GRAI filter values. 1160
This specification anticipates that valuable Filter Values will be determined once 1161
there has been time to consider the possible use cases. 1162

Type Binary Value

All Others 000

Reserved 001

Reserved 010

Reserved 011

Reserved 100

Reserved 101

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 43 of 87

Type Binary Value

Reserved 110

Reserved 111

 1163

Table 17. GRAI Filter Values 1164

• Company Prefix Index encodes the EAN.UCC Company Prefix. The value of this 1165
field is not the Company Prefix itself, but rather an index into a table that provides the 1166
Company Prefix as well as an indication of the Company Prefix’s length. The means 1167
by which hardware or software may obtain the contents of the translation table is 1168
specified in [Translation of 64-bit Tag Encoding Company Prefix Indices Into 1169
EAN.UCC Company Prefixes]. 1170

• Asset Type encodes the GRAI Asset Type number. 1171

• Serial Number contains a serial number. The 64-bit and 96-bit tag encodings are only 1172
capable of representing a subset of Serial Numbers allowed in the General EAN.UCC 1173
Specifications. The capacity of this mandatory serial number is less than the 1174
maximum EAN.UCC System specification for serial number, no leading zeros are 1175
permitted, and only numbers are permitted. 1176

3.7.1.1 GRAI-64 Encoding Procedure 1177
The following procedure creates a GRAI-64 encoding. 1178

Given: 1179

• An EAN.UCC GRAI consisting of digits 0d2…dK, where 15 ≤ K ≤ 30. 1180

• The length L of the company prefix portion of the GRAI 1181

• A Filter Value F where 0 ≤ F < 8 1182

Procedure: 1183

1. Extract the EAN.UCC Company Prefix d2d3…dL+1 1184

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table 1185
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not 1186
found in the Company Prefix Translation Table, stop: this GRAI cannot be encoded in 1187
the GRAI-64 encoding. 1188

3. Construct the Asset Type by concatenating digits d(L+2)d(L+3)…d13 and considering the 1189
result to be a decimal integer, I. If I ≥ 220, stop: this GRAI cannot be encoded in the 1190
GRAI-64 encoding. 1191

4. Construct the Serial Number by concatenating digits d15d16…dK. If any of these 1192
characters is not a digit, stop: this GRAI cannot be encoded in the GRAI-64 encoding. 1193
Otherwise, consider the result to be a decimal integer, S. If S ≥ 219, stop: this GRAI 1194
cannot be encoded in the GRAI-64 encoding. Also, if K > 15 and d15 = 0, stop: this 1195

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 44 of 87

GRAI cannot be encoded in the GRAI-64 encoding (because leading zeros are not 1196
permitted except in the case where the Serial Number consists of a single zero digit). 1197

5. Construct the final encoding by concatenating the following bit fields, from most 1198
significant to least significant: Header 00001010 (8 bits), Filter Value F (3 bits), 1199
Company Prefix Index C from Step 2 (14 bits), Asset Type I from Step 3 (20 bits), Serial 1200
Number S from Step 4 (19 bits). 1201

3.7.1.2 GRAI-64 Decoding Procedure 1202
Given: 1203

• An GRAI-64 as a 64-bit bit string 00001010b55b54…b0 (where the first eight bits 1204
00001010 are the header) 1205

Yields: 1206

• An EAN.UCC GRAI 1207

• A Filter Value 1208

Procedure: 1209

1. Bits b55b54b53, considered as an unsigned integer, are the Filter Value. 1210

2. Extract the Company Prefix Index C by considering bits b52b51…b39 as an unsigned 1211
integer. 1212

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to 1213
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value 1214
of L is also obtained from the table). If the Company Prefix Index C is not found in the 1215
Company Prefix Translation Table, stop: this bit string cannot be decoded as a GRAI-64. 1216

4. Consider bits b38b37…b19 as an unsigned integer. If this integer is greater than or 1217
equal to 10(12-L), stop: the input bit string is not a legal GRAI-64 encoding. Otherwise, 1218
convert this integer to a (12−L)-digit decimal number i1i2…i(12-L), adding leading zeros as 1219
necessary to make (12−L) digits. 1220

5. Construct a 13-digit number 0d2d3…d13 where d2d3…dL+1 = p1p2…pL from Step 3, and 1221
d(L+2)d(L+3)…d13 = i1 i2…i(12-L) from Step 4. 1222

6. Calculate the check digit d14 = (–3(d3 + d5 + d7 + d9 + d11+d13) – (d2 + d4 + d6 + d8 + 1223
d10 + d12)) mod 10. 1224

7. Consider bits b18b17…b0 as an unsigned integer. Convert this integer into a decimal 1225
number d15d16…dK, with no leading zeros (exception: if the integer is equal to zero, 1226
convert it to a single zero digit). 1227

8. The EAN.UCC GRAI is the concatenation of the digits from Steps 5, 6, and 7: 1228
0d2d3…dK. 1229

3.7.2 GRAI-96 1230
In addition to a Header, the GRAI-96 is composed of five fields: the Filter Value, 1231
Partition, Company Prefix, Asset Type, and Serial Number, as shown in Table 18. 1232

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 45 of 87

*Max. decimal value range of Company Prefix and Asset Type fields vary according to contents of the 1233
Partition field. 1234

Table 18. The EPC GRAI-96 bit allocation, header, and maximum decimal values. 1235

• Header is 8-bits, with a binary value of 0011 0011. 1236

• Filter Value is not part of the GRAI or EPC identifier, but is used for fast filtering and 1237
pre-selection of basic asset types. The Filter Values for 64-bit and 96-bit GRAI are 1238
the same. See Table 17. 1239

• Partition is an indication of where the subsequent Company Prefix and Asset Type 1240
numbers are divided. This organization matches the structure in the EAN.UCC GRAI 1241
in which the Company Prefix added to the Asset Type number totals 12 digits, yet the 1242
Company Prefix may vary from 6 to 12 digits and the Asset Type from 6 to 0 digit(s). 1243
The available values of Partition and the corresponding sizes of the Company Prefix 1244
and Asset Type fields are defined in Table 19. 1245

Partition
Value

(P)

Company Prefix Asset Type

 Bits
(M)

Digits (L) Bits
(N)

Digits

0 40 12 4 0

1 37 11 7 1

2 34 10 10 2

3 30 9 14 3

4 27 8 17 4

5 24 7 20 5

6 20 6 24 6

Table 19. GRAI-96 Partitions. 1246

 Header Filter
Value

Partition Company
Prefix

Asset Type Serial
Number

8 3 3 20-40 24-4 38 GRAI-96

0011
0011
(Binary
value)

(Refer to
Table 17
for
values)

(Refer to
Table 19
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

999,999 –
0

(Max.
decimal
range*)

274,877,906
,943

(Max.
decimal
value)

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 46 of 87

 1247

• Company Prefix contains a literal embedding of the EAN.UCC Company Prefix. 1248

• Asset Type encodes the GRAI Asset Type number. 1249

• Serial Number contains a serial number. The 64-bit and 96-bit tag encodings are only 1250
capable of representing a subset of Serial Numbers allowed in the General EAN.UCC 1251
Specifications. The capacity of this mandatory serial number is less than the 1252
maximum EAN.UCC System specification for serial number, no leading zeros are 1253
permitted, and only numbers are permitted. 1254

3.7.2.1 GRAI-96 Encoding Procedure 1255
The following procedure creates a GRAI-96 encoding. 1256

Given: 1257

• An EAN.UCC GRAI consisting of digits 0d2d3…dK, where 15 ≤ K ≤ 30. 1258

• The length L of the Company Prefix portion of the GRAI 1259

• A Filter Value F where 0 ≤ F < 8 1260

Procedure: 1261

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column 1262
of the Partition Table (Table 19) to determine the Partition Value, P, the number of bits 1263
M in the Company Prefix field, and the number of bits N in Asset Type field. If L is not 1264
found in any row of Table 19, stop: this GRAI cannot be encoded in a GRAI-96. 1265

2. Construct the Company Prefix by concatenating digits d2d3…d(L+1) and considering 1266
the result to be a decimal integer, C. 1267

3. Construct the Asset Type by concatenating digits d(L+2)d(L+3)…d13 and considering the 1268
result to be a decimal integer, I. 1269

4. Construct the Serial Number by concatenating digits d15d16…dK. If any of these 1270
characters is not a digit, stop: this GRAI cannot be encoded in the GRAI-96 encoding. 1271
Otherwise, consider the result to be a decimal integer, S. If S ≥ 238, stop: this GRAI 1272
cannot be encoded in the GRAI-96 encoding. Also, if K > 15 and d15 = 0, stop: this 1273
GRAI cannot be encoded in the GRAI-96 encoding (because leading zeros are not 1274
permitted except in the case where the Serial Number consists of a single zero digit). 1275

5. Construct the final encoding by concatenating the following bit fields, from most 1276
significant to least significant: Header 00110011 (8 bits), Filter Value F (3 bits), 1277
Partition Value P from Step 1 (3 bits), Company Prefix C from Step 2 (M bits), Asset 1278
Type I from Step 3 (N bits), Serial Number S from Step 4 (38 bits). Note that M+N = 1279
44 bits for all P. 1280

3.7.2.2 GRAI-96 Decoding Procedure 1281
Given: 1282

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 47 of 87

• An GRAI-96 as a 96-bit bit string 00110011b87b86…b0 (where the first eight bits 1283
00110011 are the header) 1284

Yields: 1285

• An EAN.UCC GRAI 1286

• A Filter Value 1287

Procedure: 1288

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value. 1289

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If 1290
P = 7, stop: this bit string cannot be decoded as a GRAI-96. 1291

3. Look up the Partition Value P in Table 19 to obtain the number of bits M in the 1292
Company Prefix and the number of digits L in the Company Prefix. 1293

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned 1294
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a 1295
legal GRAI-96 encoding. Otherwise, convert this integer into a decimal number 1296
p1p2…pL, adding leading zeros as necessary to make up L digits in total. 1297

5. Extract the Asset Type by considering bits b(81-M) b(80-M)…b38 as an unsigned integer. 1298
If this integer is greater than or equal to 10(12-L), stop: the input bit string is not a legal 1299
GRAI-96 encoding. Otherwise, convert this integer to a (12-L)-digit decimal number 1300
i1i2…i(12-L), adding leading zeros as necessary to make (12-L) digits. 1301

6. Construct a 13-digit number 0d2d3…d13 where d2d3…d(L+1) = p1p2…pL from Step 4, 1302
and d(L+2)d(L+3)…d13 = i1 i2…i(12-L) from Step 5. 1303

7. Calculate the check digit d14 = (−(–3(d3 + d5 + d7 + d9 + d11 + d13) – (d2 + d4 + d6 + d8 1304
+ d10 + d12)) mod 10. 1305

8. Extract the Serial Number by considering bits b37b36…b0 as an unsigned integer. 1306
Convert this integer to a decimal number d15d16…dK, with no leading zeros (exception: if 1307
the integer is equal to zero, convert it to a single zero digit). 1308

9. The EAN.UCC GRAI is the concatenation of a single zero digit and the digits from 1309
Steps 6, 7, and 8: 0d2d3…dK. 1310

3.8 Global Individual Asset Identifier (GIAI) 1311
The EPC encoding scheme for GIAI permits the direct embedding of EAN.UCC System 1312
standard GIAI codes on EPC tags (except as noted below for 64-bit tags). Two encoding 1313
schemes are specified, GIAI-64 (64 bits) and GIAI-96 (96 bits). 1314

In the 64-bit EPC, the limited number of bits prohibits a literal embedding of the 1315
EAN.UCC Company Prefix. As a partial solution, a Company Prefix Index is used. In 1316
addition to their existing Company Prefixes, this Index, which can accommodate up to 1317
16,384 codes, is assigned to companies that need to use the 64 bit tags. The Index is 1318
encoded on the tag instead of the Company Prefix, and is subsequently translated to the 1319
Company Prefix at low levels of the EPC system components (i.e. the Reader or Savant). 1320

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 48 of 87

While this means a limited number of Company Prefixes can be represented in the 64-bit 1321
tag, this is a transitional step to full accommodation in 96-bit and additional encoding 1322
schemes. 1323

3.8.1 GIAI-64 1324
In addition to a Header, the EPC GIAI-64 is composed of three fields: the Filter Value, 1325
Company Prefix Index, and Individual Asset Reference, as shown in Table 20. 1326

 1327

 Header Filter
Value

Company
Prefix
Index

Individual Asset
Reference

8 3 14 39 GIAI-64

0000
1011
(Binary
value)

(Refer to
Table 21
for
values)

16,383

(Max.
decimal
value)

549,755,813,887

(Max. decimal
value)

Table 20. The EPC 64-bit GIAI bit allocation, header, and maximum decimal values. 1328

• Header is 8-bits, with a binary value of 0000 1011. 1329

• Filter Value is not part of the GIAI pure identity, but is additional data that is used for 1330
fast filtering and pre-selection of basic asset types. The Filter Values for 64-bit and 1331
96-bit GIAI are the same. See Table 21 for currently defined GIAI filter values. This 1332
specification anticipates that valuable Filter Values will be determined once there has 1333
been time to consider the possible use cases. 1334

 1335

Type Binary Value

All Others 000

Reserved 001

Reserved 010

Reserved 011

Reserved 100

Reserved 101

Reserved 110

Reserved 111

Table 21. GIAI Filter Values 1336

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 49 of 87

• Company Prefix Index encodes the EAN.UCC Company Prefix. The value of this 1337
field is not the Company Prefix itself, but rather an index into a table that provides the 1338
Company Prefix as well as an indication of the Company Prefix’s length. The means 1339
by which hardware or software may obtain the contents of the translation table is 1340
specified in [Translation of 64-bit Tag Encoding Company Prefix Indices Into 1341
EAN.UCC Company Prefixes]. 1342

• Individual Asset Reference is a unique number for each instance. The 64-bit and 96-1343
bit tag encodings are only capable of representing a subset of asset references allowed 1344
in the General EAN.UCC Specifications. The capacity of this asset reference is less 1345
than the maximum EAN.UCC System specification for asset references, no leading 1346
zeros are permitted, and only numbers are permitted. 1347

3.8.1.1 GIAI-64 Encoding Procedure 1348
The following procedure creates a GIAI-64 encoding. 1349

Given: 1350

An EAN.UCC GIAI consisting of digits d1d2…dK where K ≤ 30. 1351

The length L of the company prefix portion of the GIAI 1352

A Filter Value F where 0 ≤ F < 8 1353

Procedure: 1354

1. Extract the EAN.UCC Company Prefix d1d2…dL 1355

2. Do a reverse lookup of the Company Prefix in the Company Prefix Translation Table 1356
to obtain the corresponding Company Prefix Index, C. If the Company Prefix was not 1357
found in the Company Prefix Translation Table, stop: this GIAI cannot be encoded in the 1358
GIAI-64 encoding. 1359

3. Construct the Individual Asset Reference by concatenating digits d(L+1)d(L+2)…dK. If 1360
any of these characters is not a digit, stop: this GIAI cannot be encoded in the GIAI-64 1361
encoding. Otherwise, consider the result to be a decimal integer, I. If I ≥ 239, stop: this 1362
GIAI cannot be encoded in the GIAI-64 encoding. Also, if K > L+1 and d(L+1) = 0, stop: 1363
this GIAI cannot be encoded in the GIAI-64 encoding (because leading zeros are not 1364
permitted except in the case where the Individual Asset Reference consists of a single 1365
zero digit). 1366

4. Construct the final encoding by concatenating the following bit fields, from most 1367
significant to least significant: Header 00001011 (8 bits), Filter Value F (3 bits), 1368
Company Prefix Index C from Step 2 (14 bits), Individual Asset Reference from Step 3 1369
(39 bits). 1370

3.8.1.2 GIAI-64 Decoding Procedure 1371
Given: 1372

An GIAI-64 as a 64-bit bit string 00001011b55b54…b0 (where the first eight bits 1373
00001011 are the header) 1374

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 50 of 87

Yields: 1375

An EAN.UCC GIAI 1376

A Filter Value 1377

Procedure: 1378

1. Bits b55b54b53, considered as an unsigned integer, are the Filter Value. 1379

2. Extract the Company Prefix Index C by considering bits b52b51…b39 as an unsigned 1380
integer. 1381

3. Look up the Company Prefix Index C in the Company Prefix Translation Table to 1382
obtain the EAN.UCC Company Prefix p1p2…pL consisting of L decimal digits (the value 1383
of L is also obtained from the table). If the Company Prefix Index C is not found in the 1384
Company Prefix Translation Table, stop: this bit string cannot be decoded as a GIAI-64. 1385

4. Consider bits b38b37…b0 as an unsigned integer. If this integer is greater than or equal 1386
to 10(30-L), stop: the input bit string is not a legal GIAI-64 encoding. Otherwise, convert 1387
this integer to a decimal number s1s2…sJ, with no leading zeros (exception: if the integer 1388
is equal to zero, convert it to a single zero digit). 1389

5. Construct a K-digit number d1d2…dK where d1d2…dL = p1p2…pL from Step 3, and 1390
d(L+1)d(L+2)…dK = s1 s2…sJ from Step 4. This K-digit number, where K ≤ 30, is the 1391
EAN.UCC GIAI. 1392

3.8.2 GIAI-96 1393
In addition to a Header, the EPC GIAI-96 is composed of four fields: the Filter Value, 1394
Partition, Company Prefix, and Individual Asset Reference, as shown in Table 22. 1395

 1396

 1397

*Max. decimal value range of Company Prefix and Individual Asset Reference fields vary according to 1398
contents of the Partition field. 1399

Table 22. The EPC 96-bit GIAI bit allocation, header, and maximum decimal values. 1400

 Header Filter
Value

Partition Company
Prefix

Individual Asset
Reference

8 3 3 20-40 62-42 GIAI-96

0011
0100
(Binary
value)

(Refer to
Table 21
for
values)

(Refer to
Table 23
for
values)

999,999 –
999,999,9
99,999

(Max.
decimal
range*)

4,611,686,018,427,
387,903 –
4,398,046,511,103

(Max. decimal
range*)

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 51 of 87

• Header is 8-bits, with a binary value of 0011 0100. 1401

• Filter Value is not part of the GIAI or EPC identifier, but is used for fast filtering and 1402
pre-selection of basic asset types. The Filter Values for 64-bit and 96-bit GIAI are 1403
the same. See Table 21. 1404

• The Partition is an indication of where the subsequent Company Prefix and 1405
Individual Asset Reference numbers are divided. This organization matches the 1406
structure in the EAN.UCC GIAI in which the Company Prefix may vary from 6 to 12 1407
digits. The available values of Partition and the corresponding sizes of the Company 1408
Prefix and Asset Reference fields are defined in Table 23. 1409

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 42 12

1 37 11 45 13

2 34 10 48 14

3 30 9 52 15

4 27 8 55 16

5 24 7 58 17

6 20 6 62 18

Table 23. GIAI-96 Partitions. 1410

• Company Prefix contains a literal embedding of the Company Prefix. 1411

• Individual Asset Reference is a unique number for each instance. The EPC 1412
representation is only capable of representing a subset of asset references allowed in 1413
the General EAN.UCC Specifications. The capacity of this asset reference is less than 1414
the maximum EAN.UCC System specification for asset references, no leading zeros 1415
are permitted, and only numbers are permitted. 1416

3.8.2.1 GIAI-96 Encoding Procedure 1417
The following procedure creates a GIAI-96 encoding. 1418

Given: 1419

An EAN.UCC GIAI consisting of digits d1d2…dK, where K ≤ 30. 1420

The length L of the Company Prefix portion of the GIAI 1421

A Filter Value F where 0 ≤ F < 8 1422

Procedure: 1423

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 52 of 87

1. Look up the length L of the Company Prefix in the “Company Prefix Digits” column 1424
of the Partition Table (Table 23) to determine the Partition Value, P, the number of bits 1425
M in the Company Prefix field, and the number of bits N in the Individual Asset 1426
Reference field. If L is not found in any row of Table 23, stop: this GIAI cannot be 1427
encoded in a GIAI-96. 1428

2. Construct the Company Prefix by concatenating digits d1d2…dL and considering the 1429
result to be a decimal integer, C. 1430

3. Construct the Individual Asset Reference by concatenating digits d(L+1)d(L+2)…dK. If 1431
any of these characters is not a digit, stop: this GIAI cannot be encoded in the GIAI-96 1432
encoding. Otherwise, consider the result to be a decimal integer, S. If S ≥ 2N, stop: this 1433
GIAI cannot be encoded in the GIAI-96 encoding. Also, if K > L+1 and d(L+1) = 0, stop: 1434
this GIAI cannot be encoded in the GIAI-96 encoding (because leading zeros are not 1435
permitted except in the case where the Individual Asset Reference consists of a single 1436
zero digit). 1437

4. Construct the final encoding by concatenating the following bit fields, from most 1438
significant to least significant: Header 00110100 (8 bits), Filter Value F (3 bits), 1439
Partition Value P from Step 2 (3 bits), Company Prefix C from Step 3 (M bits), 1440
Individual Asset Number S from Step 4 (N bits). Note that M+N = 82 bits for all P. 1441

3.8.2.2 GIAI-96 Decoding Procedure 1442
Given: 1443

A GIAI-96 as a 96-bit bit string 00110100b87b86…b0 (where the first eight bits 1444
00110100 are the header) 1445

Yields: 1446

An EAN.UCC GIAI 1447

A Filter Value 1448

Procedure: 1449

1. Bits b87b86b85, considered as an unsigned integer, are the Filter Value. 1450

2. Extract the Partition Value P by considering bits b84b83b82 as an unsigned integer. If 1451
P = 7, stop: this bit string cannot be decoded as a GIAI-96. 1452

3. Look up the Partition Value P in Table 23 to obtain the number of bits M in the 1453
Company Prefix and the number of digits L in the Company Prefix. 1454

4. Extract the Company Prefix C by considering bits b81b80…b(82-M) as an unsigned 1455
integer. If this integer is greater than or equal to 10L, stop: the input bit string is not a 1456
legal GIAI-96 encoding. Otherwise, convert this integer into a decimal number p1p2…pL, 1457
adding leading zeros as necessary to make up L digits in total. 1458

5. Extract the Individual Asset Reference by considering bits b(81-M) b(80-M)…b0 as an 1459
unsigned integer. If this integer is greater than or equal to 10(30-L), stop: the input bit 1460
string is not a legal GIAI-96 encoding. Otherwise, convert this integer to a decimal 1461

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 53 of 87

number s1s2…sJ, with no leading zeros (exception: if the integer is equal to zero, convert 1462
it to a single zero digit). 1463

6. Construct a K-digit number d1d2…dK where d1d2…dL = p1p2…pL from Step 4, and 1464
d(L+1)d(L+2)…dK = s1s2…sJ from Step 5. This K-digit number, where K ≤ 30, is the 1465
EAN.UCC GIAI. 1466

3.9 DoD Tag Data Constructs (non-normative) 1467

3.9.1 DoD-64 1468
This tag data construct may be used to encode 64-bit Class 0 and Class 1 tags for 1469
shipping goods to the United States Department of Defense by a supplier who has already 1470
been assigned a CAGE (Commercial and Government Entity) code. 1471
At the time of this writing, the details of what information to encode into these fields is 1472
explained in a document titled "United States Department of Defense Supplier's Passive 1473
RFID Information Guide" that can be obtained at the United States Department of 1474
Defense's web site (http://www.dodrfid.org/supplierguide.htm). 1475

Currently, the basic encoding structure of DOD-64 Tag Data Construct is as below. 1476
 1477

Table 24. The DoD-64 bit allocation, header, and maximum decimal values 1478

3.9.2 DoD-96 1479
This tag data construct may be used to encode 96-bit Class 0 and Class 1 tags for 1480
shipping goods to the United States Department of Defense by a supplier who has already 1481
been assigned a CAGE (Commercial and Government Entity) code. 1482
At the time of this writing, the details of what information to encode into these fields is 1483
explained in a document titled "United States Department of Defense Supplier's Passive 1484
RFID Information Guide" that can be obtained at the United States Department of 1485
Defense's web site (http://www.dodrfid.org/supplierguide.htm). 1486

 Header Filter
Value

Government Managed
Identifier

Serial Number

8 2 30 24 DoD-64

1100
1110
(Binary
value)

(Consult
proper US
Dept.
Defense
document
for
details)

Encoded with supplier
CAGE code in truncated
ASCII format
(Consult proper US Dept.
Defense document for
details)

16,777,215

(Max. decimal
value)

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 54 of 87

Currently, the basic encoding structure of DoD-96 Tag Data Construct is as below. 1487

Table 25. The DoD-96 bit allocation, header, and maximum decimal values 1488
 1489

4 URI Representation 1490
This section defines standards for the encoding of the Electronic Product Code™ as a 1491
Uniform Resource Identifier (URI). The URI Encoding complements the EPC Tag 1492
Encodings defined for use within RFID tags and other low-level architectural 1493
components. URIs provide a means for application software to manipulate Electronic 1494
Product Codes in a way that is independent of any particular tag-level representation, 1495
decoupling application logic from the way in which a particular Electronic Product Code 1496
was obtained from a tag. 1497

This section defines four categories of URI. The first are URIs for pure identities, 1498
sometimes called “canonical forms.” These contain only the unique information that 1499
identifies a specific physical object, and are independent of tag encodings. The second 1500
category are URIs that represent specific tag encodings. These are used in software 1501
applications where the encoding scheme is relevant, as when commanding software to 1502
write a tag. The third category are URIs that represent patterns, or sets of EPCs. These 1503
are used when instructing software how to filter tag data. The last category is a URI 1504
representation for raw tag information, generally used only for error reporting purposes. 1505

All categories of URIs are represented as Uniform Reference Names (URNs) as defined 1506
by [RFC2141], where the URN Namespace is epc. 1507

This section complements Section 3, EPC Bit-level Encodings, which specifies the 1508
currently defined tag-level representations of the Electronic Product Code. 1509

4.1 URI Forms for Pure Identities 1510
(This section is non-normative; the formal specifications for the URI types are given in 1511
Sections 4.3 and 5.) 1512

 Header Filter
Value

Government Managed
Identifier

Serial Number

8 4 48 36 DoD-96

0010
1111
(Binary
value)

(Consult
proper US
Dept.
Defense
document
for details)

Encoded with supplier
CAGE code in 8-bit
ASCII format
(Consult US Dept.
Defense doc for details)

68,719,476,735

(Max. decimal
value)

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 55 of 87

URI forms are provided for pure identities, which contain just the EPC fields that serve to 1513
distinguish one object from another. These URIs take the form of Universal Resource 1514
Names (URNs), with a different URN namespace allocated for each pure identity type. 1515

For the EPC General Identifier (Section 2.1.1), the pure identity URI representation is as 1516
follows: 1517
urn:epc:id:gid:GeneralManagerNumber.ObjectClass.SerialNumber 1518

In this representation, the three fields GeneralManagerNumber, ObjectClass, 1519
and SerialNumber correspond to the three components of an EPC General Identifier 1520
as described in Section 2.1.1. In the URI representation, each field is expressed as a 1521
decimal integer, with no leading zeros (except where a field’s value is equal to zero, in 1522
which case a single zero digit is used). 1523

There are also pure identity URI forms defined for identity types corresponding to certain 1524
types within the EAN.UCC System family of codes as defined in Section 2.1.2; namely, 1525
the Serialized Global Trade Item Number (SGTIN), the Serial Shipping Container Code 1526
(SSCC), the Serialized Global Location Number (SGLN), the Global Reusable Asset 1527
Identifier (GRAI), and the Global Individual Asset Identifier (GIAI). The URI 1528
representations corresponding to these identifiers are as follows: 1529
urn:epc:id:sgtin:CompanyPrefix.ItemReference.SerialNumber 1530
urn:epc:id:sscc:CompanyPrefix.SerialReference 1531
urn:epc:id:sgln:CompanyPrefix.LocationReference.SerialNumber 1532
urn:epc:id:grai:CompanyPrefix.AssetType.SerialNumber 1533
urn:epc:id:giai:CompanyPrefix.IndividualAssetReference 1534

In these representations, CompanyPrefix corresponds to an EAN.UCC company 1535
prefix assigned to a manufacturer by the UCC or EAN. (A UCC company prefix is 1536
converted to an EAN.UCC company prefix by adding one leading zero at the beginning.) 1537
The number of digits in this field is significant, and leading zeros are included as 1538
necessary. 1539

The ItemReference, SerialReference, LocationReference, and 1540
AssetType fields correspond to the similar fields of the GTIN, SSCC, GLN, and GRAI, 1541
respectively. Like the CompanyPrefix field, the number of digits in these fields is 1542
significant, and leading zeros are included as necessary. The number of digits in these 1543
fields, when added to the number of digits in the CompanyPrefix field, always total 1544
the same number of digits according to the identity type: 13 digits total for SGTIN, 17 1545
digits total for SSCC, 12 digits total for SGLN, and 12 characters total for the GRAI. 1546
(The ItemReference field of the SGTIN includes the GTIN Indicator (PI) digit, 1547
appended to the beginning of the item reference. The SerialReference field 1548
includes the SSCC Extension Digit (ED), appended at the beginning of the serial 1549
reference. In no case are check digits included in URI representations.) 1550

In contrast to the other fields, the SerialNumber field of the SGLN is a pure integer, 1551
with no leading zeros. The SerialNumber field of the SGTIN and GRAI, as well as 1552
the IndividualAssetReference field of the GIAI, may include digits, letters, and 1553

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 56 of 87

certain other characters. In order for an SGTIN, GRAI, or GIAI to be encodable on a 64-1554
bit and 96-bit tag, however, these fields must consist only of digits with no leading zeros. 1555
These restrictions are defined in the encoding procedures for these types, as well as in 1556
Appendix F. 1557

An SGTIN, SSCC, etc in this form is said to be in SGTIN-URI form, SSCC-URI form, 1558
etc form, respectively. Here are examples: 1559
urn:epc:id:sgtin:0652642.800031.400 1560
urn:epc:id:sscc:0652642.0123456789 1561
urn:epc:id:sgln:0652642.12345.400 1562
urn:epc:id:grai:0652642.12345.1234 1563
urn:epc:id:giai:0652642.123456 1564

Referring to the first example, the corresponding GTIN-14 code is 80652642000311. 1565
This divides as follows: the first digit (8) is the PI digit, which appears as the first digit 1566
of the ItemReference field in the URI, the next seven digits (0652642) are the 1567
CompanyPrefix, the next five digits (00031) are the remainder of the 1568
ItemReference, and the last digit (1) is the check digit, which is not included in the 1569
URI. 1570

Referring to the second example, the corresponding SSCC is 006526421234567896 and 1571
the last digit (6) is the check digit, not included in the URI. 1572

Referring to the third example, the corresponding GLN is 0652642123458, where the last 1573
digit (8) is the check digit, not included in the URI. 1574

Referring to the fourth example, the corresponding GRAI is 006526421234581234, 1575
where the digit (8) is the check digit, not included in the URI. 1576

Referring to the fifth example, the corresponding GIAI is 0652642123456. (GIAI codes 1577
do not include a check digit.) 1578

Note that all five URI forms have an explicit indication of the division between the 1579
company prefix and the remainder of the code. This is necessary so that the URI 1580
representation may be converted into tag encodings. In general, the URI representation 1581
may be converted to the corresponding EAN.UCC numeric form (by combining digits 1582
and calculating the check digit), but converting from the EAN.UCC numeric form to the 1583
corresponding URI representation requires independent knowledge of the length of the 1584
company prefix. 1585

For the DoD identifier (Section 3.9), the pure identity URI representation is as follows: 1586
urn:epc:id:usdod:CAGECodeOrDODAAC.serialNumber 1587

where CAGECodeOrDODAAC is the five-character CAGE code or six-character 1588
DoDAAC, and serialNumber is the serial number represented as a decimal integer 1589
with no leading zeros (except that a serial number whose value is zero should be 1590
represented as a single zero digit). Note that a space character is never included as part of 1591

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 57 of 87

CAGECodeOrDODAAC in the URI form, even though on a 96-bit tag a space character is 1592
used to pad the five-character CAGE code to fit into the six-character field on the tag. 1593

 1594

4.2 URI Forms for Related Data Types 1595
(This section is non-normative; the formal specifications for the URI types are given in 1596
Sections 4.3 and 5.) 1597

There are several data types that commonly occur in applications that manipulate 1598
Electronic Product Codes, which are not themselves Electronic Product Codes but are 1599
closely related. This specification provides URI forms for those as well. The general 1600
form of the epc URN Namespace is 1601
urn:epc:type:typeSpecificPart 1602

The type field identifies a particular data type, and typeSpecificPart encodes 1603
information appropriate for that data type. Currently, there are three possibilities defined 1604
for type, discussed in the next three sections. 1605

4.2.1 URIs for EPC Tags 1606
In some cases, it is desirable to encode in URI form a specific tag encoding of an EPC. 1607
For example, an application may wish to report to an operator what kinds of tags have 1608
been read. In another example, an application responsible for programming tags needs to 1609
be told not only what Electronic Product Code to put on a tag, but also the encoding 1610
scheme to be used. Finally, applications that wish to manipulate any additional data 1611
fields on tags need some representation other than the pure identity forms. 1612

EPC Tag URIs are encoded by setting the type field to tag, with the entire URI having 1613
this form: 1614
urn:epc:tag:EncName:EncodingSpecificFields 1615

where EncName is the name of an EPC encoding scheme, and 1616
EncodingSpecificFields denotes the data fields required by that encoding 1617
scheme, separated by dot characters. Exactly what fields are present depends on the 1618
specific encoding scheme used. 1619

In general, there are one or more encoding schemes (and corresponding EncName 1620
values) defined for each pure identity type. For example, the SGTIN Identifier has two 1621
encodings defined: sgtin-96 and sgtin-64, corresponding to the 96-bit encoding 1622
and the 64-bit encoding. Note that these encoding scheme names are in one-to-one 1623
correspondence with unique tag Header values, which are used to represent the encoding 1624
schemes on the tag itself. 1625

The EncodingSpecificFields, in general, include all the fields of the 1626
corresponding pure identity type, possibly with additional restrictions on numeric range, 1627
plus additional fields supported by the encoding. For example, all of the defined 1628
encodings for the Serialized GTIN include an additional Filter Value that applications use 1629

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 58 of 87

to do tag filtering based on object characteristics associated with (but not encoded within) 1630
an object’s pure identity. 1631

Here is an example: a Serialized GTIN 64-bit encoding: 1632
urn:epc:tag:sgtin-64:3.0652642.800031.400 1633

In this example, the number 3 is the Filter Value . 1634

The tag URI for the DoD identifier is as follows: 1635
urn:epc:tag:tagType:filter.CAGECodeOrDODAAC.serialNumber 1636

where tagType is either usdod-64 or usdod-96, filter is the filter value represented 1637
as either one or two decimal digits (depending on the tagType), and the other two fields 1638
are as defined above in 4.1. 1639

 1640

4.2.2 URIs for Raw Bit Strings Arising From Invalid Tags 1641
Certain bit strings do not correspond to legal encodings. For example, if the most 1642
significant bits cannot be recognized as a valid EPC header, the bit-level pattern is not a 1643
legal EPC. For a second example, if the binary value of a field in a tag encoding is 1644
greater than the value that can be contained in the number of decimal digits in that field 1645
in the URI form, the bit level pattern is not a legal EPC. Nevertheless, software may wish 1646
to report such invalid bit-level patterns to users or to other software, and so a 1647
representation of invalid bit-level patterns as URIs is provided. The raw form of the URI 1648
has this general form: 1649
urn:epc:raw:BitLength.Value 1650

where BitLength is the number of bits in the invalid representation, and Value is the 1651
entire bit-level representation converted to a single hexadecimal number and preceded by 1652
the letter “x”. For example, this bit string: 1653
0000000000000000000100100011010011011110101011011011111011101111 1654
which is invalid because no valid header begins with 0000 0000, corresponds to this raw 1655
URI: 1656
urn:epc:raw:64.x00001234DEADBEEF 1657

In order to ensure that a given bit string has only one possible raw URI representation, 1658
the number of digits in the hexadecimal value is required to be equal to the BitLength 1659
divided by four and rounded up to the nearest whole number. Moreover, only uppercase 1660
letters are permitted for the hexadecimal digits A, B, C, D, E, and F. 1661

It is intended that this URI form be used only when reporting errors associated with 1662
reading invalid tags. It is not intended to be a general mechanism for communicating 1663
arbitrary bit strings for other purposes. 1664

Explanation (non-normative): The reason for recommending against using the raw URI 1665
for general purposes is to avoid having an alternative representation for legal tag 1666
encodings. 1667

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 59 of 87

Earlier versions of this specification described a decimal, as opposed to hexadecimal, 1668
version of the raw URI. This is still supported for back-compatibility, but its use is no 1669
longer recommended. The “x” character is included so that software may distinguish 1670
between the decimal and hexadecimal forms. 1671

4.2.3 URIs for EPC Patterns 1672
Certain software applications need to specify rules for filtering lists of EPCs according to 1673
various criteria. This specification provides a pattern URI form for this purpose. A 1674
pattern URI does not represent a single Electronic Product Code, but rather refers to a set 1675
of EPCs. A typical pattern looks like this: 1676
urn:epc:pat:sgtin-64:3.0652642.[1024-2047].* 1677

This pattern refers to any EPC SGTIN Identifier 64-bit tag, whose Filter field is 3, whose 1678
Company Prefix is 0652642, whose Item Reference is in the range 1024 ≤ itemReference 1679
≤ 2047, and whose Serial Number may be anything at all. 1680

In general, there is a pattern form corresponding to each tag encoding form 1681
(Section 4.2.1), whose syntax is essentially identical except that ranges or the star (*) 1682
character may be used in each field. 1683

For the SGTIN, SSCC, SGLN, GRAI and GIAI patterns, the pattern syntax slightly 1684
restricts how wildcards and ranges may be combined. Only two possibilities are 1685
permitted for the CompanyPrefix field. One, it may be a star (*), in which case the 1686
following field (ItemReference, SerialReference, or LocationReference) 1687
must also be a star. Two, it may be a specific company prefix, in which case the 1688
following field may be a number, a range, or a star. A range may not be specified for the 1689
CompanyPrefix. 1690

Explanation (non-normative): Because the company prefix is variable length, a range 1691
may not be specified, as the range might span different lengths. Also, in the case of the 1692
SGTIN-64, SSCC-64, and GLN-64 encodings, the tag contains a manager index which 1693
maps into a company prefix but not in a way that preserves contiguous ranges. When a 1694
particular company prefix is specified, however, it is possible to match ranges or all 1695
values of the following field, because its length is fixed for a given company prefix. The 1696
other case that is allowed is when both fields are a star, which works for all tag 1697
encodings because the corresponding tag fields (including the Partition field, where 1698
present) are simply ignored. 1699

The pattern URI for the DoD Construct is as follows: 1700
urn:epc:pat:tagType:filterPat.CAGECodeOrDODAACPat.serialNumb1701
erPat 1702

where tagType is as defined above in 4.2.1, filterPat is either a filter value, a 1703
range of the form [lo-hi], or a * character; CAGECodeOrDODAACPat is either a 1704
CAGE Code/DODAAC or a * character; and serialNumberPat is either a serial 1705
number, a range of the form [lo-hi], or a * character. 1706

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 60 of 87

4.3 Syntax 1707
The syntax of the EPC-URI and the URI forms for related data types are defined by the 1708
following grammar. 1709

4.3.1 Common Grammar Elements 1710
NumericComponent ::= ZeroComponent | NonZeroComponent 1711
ZeroComponent ::= “0” 1712
NonZeroComponent ::= NonZeroDigit Digit* 1713
PaddedNumericComponent ::= Digit+ 1714
Digit ::= “0” | NonZeroDigit 1715
NonZeroDigit ::= “1” | “2” | “3” | “4” 1716
 | “5” | “6” | “7” | “8” | “9” 1717
UpperAlpha ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” 1718
 | “H” | “I” | “J” | “K” | “L” | “M” | “N” 1719
 | “O” | “P” | “Q” | “R” | “S” | “T” | “U” 1720
 | “V” | “W” | “X” | “Y” | “Z” 1721
LowerAlpha ::= “a” | “b” | “c” | “d” | “e” | “f” | “g” 1722
 | “h” | “i” | “j” | “k” | “l” | “m” | “n” 1723
 | “o” | “p” | “q” | “r” | “s” | “t” | “u” 1724
 | “v” | “w” | “x” | “y” | “z” 1725
OtherChar ::= “!” | “’” | “(“ | “)“ | “*” | “+” | “,” | “-“ 1726
 | “.” | “:” | “;” | “=” | “_” 1727
UpperHexChar ::= Digit | “A” | “B” | “C” | “D” | “E” | “F” 1728
HexComponent ::= UpperHexChar+ 1729
Escape ::= “%” HexChar HexChar 1730
HexChar ::= Digit | “A” | “B” | “C” | “D” | “E” | “F” 1731
 UpperHexChar | “a” | “b” | “c” | “d” | “e” | “f” 1732
GS3A3Char ::= Digit | UpperAlpha | LowerAlpha | OtherChar 1733
 | Escape 1734
GS3A3Component ::= GS3A3Char+ 1735

The syntactic construct GS3A3Component is used to represent fields of EAN.UCC 1736
codes that permit alphanumeric and other characters as specified in Figure 3A3-1 of the 1737
EAN.UCC General Specifications. Owing to restrictions on URN syntax as defined by 1738
[RFC2141], not all characters permitted in the EAN.UCC General Specifications may be 1739
represented directly in a URN. Specifically, the characters “ (double quote), % (percent), 1740
& (ampersand), / (forward slash), < (less than), > (greater than), and ? (question mark) 1741
are permitted in the General Specifications but may not be included directly in a URN. 1742
To represent one of these characters in a URN, escape notation must be used in which the 1743

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 61 of 87

character is represented by a percent sign, followed by two hexadecimal digits that give 1744
the ASCII character code for the character. 1745

4.3.2 EPCGID-URI 1746
EPCGID-URI ::= “urn:epc:id:gid:” 2*(NumericComponent “.”) 1747
NumericComponent 1748

4.3.3 SGTIN-URI 1749
SGTIN-URI ::= “urn:epc:id:sgtin:” SGTINURIBody 1750
SGTINURIBody ::= 2*(PaddedNumericComponent “.”) 1751
GS3A3Component 1752

The number of characters in the two PaddedNumericComponent fields must total 13 1753
(not including any of the dot characters). 1754

The Serial Number field of the SGTIN-URI is expressed as a GS3A3Component, 1755
which permits the representation of all characters permitted in the UCC/EAN-128 1756
Application Identifier 21 Serial Number according to the EAN.UCC General 1757
Specfications. SGTIN-URIs that are derived from 64-bit and 96-bit tag encodings, 1758
however, will have Serial Numbers that consist only of digit characters and which have 1759
no leading zeros. These limitations are described in the encoding procedures, and in 1760
Appendix F. 1761

4.3.4 SSCC-URI 1762
SSCC-URI ::= “urn:epc:id:sscc:” SSCCURIBody 1763
SSCCURIBody ::= PaddedNumericComponent “.” 1764
PaddedNumericComponent 1765

The number of characters in the two PaddedNumericComponent fields must total 17 1766
(not including any of the dot characters). 1767

4.3.5 SGLN-URI 1768
SGLN-URI ::= “urn:epc:id:sgln:” SGLNURIBody 1769
SGLNURIBody ::= 2*(PaddedNumericComponent “.”) 1770
NumericComponent 1771

The number of characters in the two PaddedNumericComponent fields must total 12 1772
(not including any of the dot characters). 1773

4.3.6 GRAI-URI 1774
GRAI-URI ::= “urn:epc:id:grai:” GRAIURIBody 1775
GRAIURIBody ::= 2*(PaddedNumericComponent “.”) 1776
GS3A3Component 1777

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 62 of 87

The number of characters in the two PaddedNumericComponent fields must total 12 1778
(not including any of the dot characters). 1779

The Serial Number field of the GRAI-URI is expressed as a GS3A3Component, which 1780
permits the representation of all characters permitted in the Serial Number field of the 1781
GRAI according to the EAN.UCC General Specifications. GRAI-URIs that are derived 1782
from 64-bit and 96-bit tag encodings, however, will have Serial Numbers that consist 1783
only of digit characters and which have no leading zeros. These limitations are described 1784
in the encoding procedures, and in Appendix F. 1785

4.3.7 GIAI-URI 1786
GIAI-URI ::= “urn:epc:id:giai:” GIAIURIBody 1787
GIAIURIBody ::= PaddedNumericComponent “.” GS3A3Component 1788

The total number of characters in the PaddedNumericComponent and 1789
GS3A3Component fields must not exceed 30 (not including the dot character that 1790
seprates the two fields). 1791

The Individual Asset Reference field of the GIAI-URI is expressed as a 1792
GS3A3Component, which permits the representation of all characters permitted in the 1793
Individual Asset Reference field of the GIAI according to the EAN.UCC General 1794
Specifications. GIAI-URIs that are derived from 64-bit and 96-bit tag encodings, 1795
however, will have Individual Asset References that consist only of digit characters and 1796
which have no leading zeros. These limitations are described in the encoding procedures, 1797
and in Appendix F. 1798

4.3.8 EPC Tag URI 1799
TagURI ::= “urn:epc:tag:” TagURIBody 1800
TagURIBody ::= GIDTagURIBody | SGTINSGLNGRAITagURIBody | 1801
SSCCGIAITagURIBody 1802
GIDTagURIBody ::= GIDTagEncName “:” 2*(NumericComponent “.”) 1803
NumericComponent 1804
GIDTagEncName ::= “gid-96” 1805
SGTINSGLNGRAITagURIBody ::= SGTINSGLNGRAITagEncName “:” 1806
NumericComponent “.” 2*(PaddedNumericComponent “.”) 1807
NumericComponent 1808
SGTINSGLNGRAITagEncName ::= “sgtin-96” | “sgtin-64” | “sgln-1809
96” | “sgln-64” | ”grai-96” | ”grai-64” 1810
SSCCGIAITagURIBody ::= SSCCGIAITagEncName “:” 1811
NumericComponent 2*(“.” PaddedNumericComponent) 1812
SSCCGIAITagEncName ::= “sscc-96” | “sscc-64” | “giai-96” | 1813
“giai-64” 1814

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 63 of 87

4.3.9 Raw Tag URI 1815
RawURI ::= “urn:epc:raw:” RawURIBody(DecimalRawURIBody | 1816
HexRawURIBody) 1817
DecimalRawURIBody ::= NonZeroComponent “.” NumericComponent 1818
HexRawURIBody ::= NonZeroComponent “.x” HexComponent 1819

4.3.10 EPC Pattern URI 1820
PatURI ::= “urn:epc:pat:” PatBody 1821
PatBody ::= GIDPatURIBody | SGTINSGLNGRAIPatURIBody | 1822
SSCCGIAIPatURIBody 1823
GIDPatURIBody ::= GIDTagEncName “:” 2*(PatComponent “.”) 1824
PatComponent 1825
SGTINSGLNGRAIPatURIBody ::= SGTINSGLNGRAITagEncName “:” 1826
PatComponent “.” GS1PatBody “.” PatComponent 1827
SSCCGIAIPatURIBody ::= SSCCGIAITagEncName “:” PatComponent 1828
“.” GS1PatBody 1829
GS1PatBody ::= “*.*” | (PaddedNumericComponent “.” 1830
PatComponent) 1831
PatComponent ::= NumericComponent 1832
 | StarComponent 1833
 | RangeComponent 1834
StarComponent ::= “*” 1835
RangeComponent ::= “[“ NumericComponent “-“ 1836
 NumericComponent “]” 1837

For a RangeComponent to be legal, the numeric value of the first 1838
NumericComponent must be less than or equal to the numeric value of the second 1839
NumericComponent. 1840

4.3.11 DoD Construct URI 1841
DOD-URI ::= “urn:epc:id:usdod:” CAGECodeOrDODAAC “.” 1842
DoDSerialNumber 1843
DODTagURI ::= “urn:epc:tag:” DoDTagType “:” DoDFilter “.” 1844
CAGECodeOrDODAAC “.” DoDSerialNumber 1845
DODPatURI ::= “urn:epc:pat:” DoDTagType “:” DoDFilterPat “.” 1846
CAGECodeOrDODAACPat “.” DoDSerialNumberPat 1847
DoDTagType ::= “usdod-64” | “usdod-96” 1848
DoDFilter ::= NumericComponent 1849
CAGECodeOrDODAAC ::= CAGECode | DODAAC 1850

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 64 of 87

CAGECode ::= CAGECodeOrDODAACChar*5 1851
DODAAC ::= CAGECodeOrDODAACChar*6 1852
DoDSerialNumber ::= NumericComponent 1853
DoDFilterPat ::= PatComponent 1854
CAGECodeOrDODAACPat ::= CAGECodeOrDODAAC | StarComponent 1855
DoDSerialNumberPat ::= PatComponent 1856
CAGECodeOrDODAACChar ::= Digit | “A” | “B” | “C” | “D” | “E” 1857
| “F” | “G” | “H” | “J” | “K” | “L” | “M” | “N” | “P” | “Q” 1858
| “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z” 1859

 1860

4.3.12 Summary (non-normative) 1861
The syntax rules above can be summarized informally as follows: 1862
urn:epc:id:gid:MMM.CCC.SSS 1863
urn:epc:id:sgtin:PPP.III.SSS 1864
urn:epc:id:sscc:PPP.III 1865
urn:epc:id:sgln:PPP.III 1866
urn:epc:id:grai:PPP.III.SSS 1867
urn:epc:id:giai:PPP.SSS 1868
urn:epc:id:usdod:TTT.SSS 1869
 1870
urn:epc:tag:sgtin-64:FFF.PPP.III.SSS 1871
urn:epc:tag:sscc-64:FFF.PPP.III 1872
urn:epc:tag:sgln-64:FFF.PPP.III.SSS 1873
urn:epc:tag:grai-64:FFF.PPP.III.SSS 1874
urn:epc:tag:giai-64:FFF.PPP.SSS 1875
urn:epc:tag:gid-96:MMM.CCC.SSS 1876
urn:epc:tag:sgtin-96:FFF.PPP.III.SSS 1877
urn:epc:tag:sscc-96:FFF.PPP.III 1878
urn:epc:tag:sgln-96:FFF.PPP.III.SSS 1879
urn:epc:tag:grai-96:FFF.PPP.III.SSS 1880
urn:epc:tag:giai-96:FFF.PPP.SSS 1881
urn:epc:tag:usdod-64:FFF.TTT.SSS 1882
urn:epc:tag:usdod-96:FFF.TTT.SSS 1883

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 65 of 87

 1884
urn:epc:raw:LLL.BBB 1885
urn:epc:raw:LLL.HHH 1886
 1887
urn:epc:pat:sgtin-64:FFFpat.PPP.IIIpat.SSSpat 1888
urn:epc:pat:sgtin-64:FFFpat.*.*.SSSpat 1889
urn:epc:pat:sscc-64:FFFpat.PPP.IIIpat 1890
urn:epc:pat:sscc-64:FFFpat.*.* 1891
urn:epc:pat:sgln-64:FFFpat.PPP.IIIpat.SSSpat 1892
urn:epc:pat:sgln-64:FFFpat.*.*.SSSpat 1893
urn:epc:pat:grai-64:FFFpat.PPP.IIIpat.SSSpat 1894
urn:epc:pat:grai-64:FFFpat.*.*.SSSpat 1895
urn:epc:pat:giai-64:FFFpat.PPP.SSSpat 1896
urn:epc:pat:giai-64:FFFpat.*.* 1897
urn:epc:pat:usdod-64:FFFpat.TTT.SSSpat 1898
urn:epc:pat:usdod-64:FFFpat.*.SSSpat 1899
urn:epc:pat:gid-96:MMMpat.CCCpat.SSSpat 1900
urn:epc:pat:sgtin-96:FFFpat.PPP.IIIpat.SSSpat 1901
urn:epc:pat:sgtin-96:FFFpat.*.*.SSSpat 1902
urn:epc:pat:sscc-96:FFFpat.PPP.IIIpat 1903
urn:epc:pat:sscc-96:FFFpat.*.* 1904
urn:epc:pat:sgln-96:FFFpat.PPP.IIIpat.SSSpat 1905
urn:epc:pat:sgln-96:FFFpat.*.*.SSSpat 1906
urn:epc:pat:grai-96:FFFpat.PPP.IIIpat.SSSpat 1907
urn:epc:pat:grai-96:FFFpat.*.*.SSSpat 1908
urn:epc:pat:giai-96:FFFpat.PPP.SSSpat 1909
urn:epc:pat:giai-96:FFFpat.*.* 1910
urn:epc:pat:usdod-96:FFFpat.TTT.SSSpat 1911
urn:epc:pat:usdod-96:FFFpat.*.SSSpat 1912

where 1913

 MMM denotes a General Manager Number 1914

 CCC denotes an Object Class number 1915

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 66 of 87

 SSS denotes a Serial Number or GIAI Individual Asset Reference 1916

 PPP denotes an EAN.UCC Company Prefix 1917

 TTT denotes a US DoD assigned CAGE code or DODAAC 1918

 III denotes an SGTIN Item Reference (with Indicator Digit appended to the 1919
beginning), an SSCC Shipping Container Serial Number (with the Extension (ED) digit 1920
appended at the beginning), a SGLN Location Reference, or a GRAI Asset Type. 1921

 FFF denotes a filter code as used by the SGTIN, SSCC, SGLN, GRAI, GIAI, and DoD 1922
tag encodings 1923

 XXXpat is the same as XXX but allowing * and [lo-hi] pattern syntax in addition 1924

 LLL denotes the number of bits of an uninterpreted bit sequence 1925

 BBB denotes the literal value of an uninterpreted bit sequence converted to decimal 1926

 HHH denotes the literal value of an uninterpreted bit sequence converted to hexadecimal 1927
and preceded by the character ‘x’. 1928

and where all numeric fields are in decimal with no leading zeros (unless the overall 1929
value of the field is zero, in which case it is represented with a single 0 character), with 1930
the exception of the hexadecimal raw representation. 1931

Exceptions: 1932

1. The length of PPP and III is significant, and leading zeros are used as necessary. 1933
The length of PPP is the length of the company prefix as assigned by EAN or 1934
UCC. The length of III plus the length of PPP must equal 13 for SGTIN, 17 for 1935
SSCC, 12 for GLN, or 12 for GRAI. 1936

2. The Value field of urn:epc:raw is expressed in hexadecimal if the value is 1937
preceded by the character ‘x’. 1938

5 Translation between EPC-URI and Other EPC 1939
Representations 1940

This section defines the semantics of EPC-URI encodings, by defining how they are 1941
translated into other EPC encodings and vice versa. 1942

The following procedure translates a bit-level encoding of an EPC into an EPC-URI: 1943

1. Determine the identity type and encoding scheme by finding the row in Table 1 1944
(Section 3.1) that matches the most significant bits of the bit string. If the most 1945
significant bits do not match any row of the table, stop: the bit string is invalid 1946
and cannot be translated into an EPC-URI. If the encoding scheme indicates one 1947
of the DoD Tag Data Constructs, consult the appropriate U.S. Department of 1948
Defense document for specific encoding and decoding rules. Otherwise, if the 1949
encoding scheme is SGTIN-64 or SGTIN-96, proceed to Step 2; if the encoding 1950
scheme is SSCC-64 or SSCC-96, proceed to Step 5; if the encoding scheme is 1951
SGLN-64 or SGLN-96, proceed to Step 8; if the encoding scheme is GRAI-64 or 1952

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 67 of 87

GRAI-96, proceed to Step 11; if the encoding scheme is GIAI-64 or GIAI-96, 1953
proceed to Step 14; if the encoding scheme is GID-96, proceed to Step 17. 1954

2. Follow the decoding procedure given in Section 3.4.1.2 (for SGTIN-64) or in 1955
Section 3.4.2.2 (for SGTIN-96) to obtain the decimal Company Prefix p1p2...pL, 1956
the decimal Item Reference and Indicator i1i2…i(13-L), and the Serial Number S. If 1957
the decoding procedure fails, stop: the bit-level encoding cannot be translated into 1958
an EPC-URI. 1959

3. Create an EPC-URI by concatenating the following: the string 1960
urn:epc:id:sgtin:, the Company Prefix p1p2...pL where each digit 1961
(including any leading zeros) becomes the corresponding ASCII digit character, a 1962
dot (.) character, the Item Reference and Indicator i1i2…i(13-L) (handled similarly), 1963
a dot (.) character, and the Serial Number S as a decimal integer. The portion 1964
corresponding to the Serial Number must have no leading zeros, except where the 1965
Serial Number is itself zero in which case the corresponding URI portion must 1966
consist of a single zero character. 1967

4. Go to Step 19. 1968

5. Follow the decoding procedure given in Section 3.5.1.2 (for SSCC-64) or in 1969
Section 3.5.2.2 (for SSCC-96) to obtain the decimal Company Prefix p1p2...pL, 1970
and the decimal Serial Reference s1s2…s(17-L). If the decoding procedure fails, 1971
stop: the bit-level encoding cannot be translated into an EPC-URI. 1972

6. Create an EPC-URI by concatenating the following: the string 1973
urn:epc:id:sscc:, the Company Prefix p1p2...pL where each digit (including 1974
any leading zeros) becomes the corresponding ASCII digit character, a dot (.) 1975
character, and the Serial Reference s1s2…s(17-L) (handled similarly). 1976

7. Go to Step 19. 1977

8. Follow the decoding procedure given in Section 3.6.1.2 (for SGLN-64) or in 1978
Section 3.6.2.2 (for SGLN-96) to obtain the decimal Company Prefix p1p2...pL, 1979
the decimal Location Reference i1i2…i(12-L), and the Serial Number S. If the 1980
decoding procedure fails, stop: the bit-level encoding cannot be translated into an 1981
EPC-URI. 1982

9. Create an EPC-URI by concatenating the following: the string 1983
urn:epc:id:sgln:, the Company Prefix p1p2...pL where each digit (including 1984
any leading zeros) becomes the corresponding ASCII digit character, a dot (.) 1985
character, the Location Reference i1i2…i(12-L) (handled similarly), a dot (.) 1986
character, and the Serial Number S as a decimal integer. The portion 1987
corresponding to the Serial Number must have no leading zeros, except where the 1988
Serial Number is itself zero in which case the corresponding URI portion must 1989
consist of a single zero character. 1990

10. Go to Step 19. 1991

11. Follow the decoding procedure given in Section 3.7.1.2 (for GRAI-64) or in 1992
Section 3.7.2.2 (for GRAI-96) to obtain the decimal Company Prefix p1p2...pL, the 1993

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 68 of 87

decimal Asset Type i1i2…i(12-L), and the Serial Number S. If the decoding 1994
procedure fails, stop: the bit-level encoding cannot be translated into an EPC-URI. 1995

12. Create an EPC-URI by concatenating the following: the string 1996
urn:epc:id:grai:, the Company Prefix p1p2...pL where each digit (including 1997
any leading zeros) becomes the corresponding ASCII digit character, a dot (.) 1998
character, the Asset Type i1i2…i(12-L) (handled similarly), a dot (.) character, and 1999
the Serial Number S as a decimal integer. The portion corresponding to the Serial 2000
Number must have no leading zeros, except where the Serial Number is itself zero 2001
in which case the corresponding URI portion must consist of a single zero 2002
character. 2003

13. Go to Step 19. 2004

14. Follow the decoding procedure given in Section 3.8.1.2 (for GIAI-64) or in 2005
Section 3.8.2.2 (for GIAI-96) to obtain the decimal Company Prefix p1p2...pL, and 2006
the Individual Asset Reference S. If the decoding procedure fails, stop: the bit-2007
level encoding cannot be translated into an EPC-URI. 2008

15. Create an EPC-URI by concatenating the following: the string 2009
urn:epc:id:giai:, the Company Prefix p1p2...pL where each digit (including 2010
any leading zeros) becomes the corresponding ASCII digit character, a dot (.) 2011
character, and the Individual Asset Reference S as a decimal integer. The portion 2012
corresponding to the Individual Asset Reference must have no leading zeros, 2013
except where the Individual Asset Reference is itself zero in which case the 2014
corresponding URI portion must consist of a single zero character. 2015

16. Go to Step 19. 2016

17. Follow the decoding procedure given in Section 3.3.1.2 to obtain the General 2017
Manager Number M, the Object Class C, and the Serial Number S. 2018

18. Create an EPC-URI by concatenating the following: the string 2019
urn:epc:id:gid:, the General Manager Number as a decimal integer, a dot 2020
(.) character, the Object Class as a decimal integer, a dot (.) character, and the 2021
Serial Number S as a decimal integer. Each decimal number must have no 2022
leading zeros, except where the integer is itself zero in which case the 2023
corresponding URI portion must consist of a single zero character. 2024

19. The translation is now complete. 2025

The following procedure translates a bit-level tag encoding into either an EPC Tag URI 2026
or a Raw Tag URI: 2027

1. Determine the identity type and encoding scheme by finding the row in Table 1 2028
(Section 3.1) that matches the most significant bits of the bit string. If the 2029
encoding scheme indicates one of the DoD Tag Data Constructs, consult the 2030
appropriate U.S. Department of Defense document for specific encoding and 2031
decoding rules. If the encoding scheme is SGTIN-64 or SGTIN-96, proceed to 2032
Step 2; if the encoding scheme is SSCC-64 or SSCC-96, proceed to Step 5; if the 2033
encoding scheme is SGLN-64 or SGLN-96, proceed to Step 8; if the encoding 2034

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 69 of 87

scheme is GRAI-64 or GRAI-96, proceed to Step 11, if the encoding scheme is 2035
GIAI-64 or GIAI-96, proceed to Step 14, if the encoding scheme is GID-96, 2036
proceed to Step 17; otherwise, proceed to Step 20. 2037

2. Follow the decoding procedure given in Section 3.4.1.2 (for SGTIN-64) or in 2038
Section 3.4.2.2 (for SGTIN-96) to obtain the decimal Company Prefix p1p2...pL, 2039
the decimal Item Reference and Indicator i1i2…i(13-L), the Filter Value F, and the 2040
Serial Number S. If the decoding procedure fails, proceed to Step 20, otherwise 2041
proceed to the next step. 2042

3. Create an EPC Tag URI by concatenating the following: the string 2043
urn:epc:tag:, the encoding scheme (sgtin-64 or sgtin-96), a colon (:) 2044
character, the Filter Value F as a decimal integer, a dot (.) character, the 2045
Company Prefix p1p2...pL where each digit (including any leading zeros) becomes 2046
the corresponding ASCII digit character, a dot (.) character, the Item Reference 2047
and Indicator i1i2…i(13-L) (handled similarly), a dot (.) character, and the Serial 2048
Number S as a decimal integer. The portions corresponding to the Filter Value 2049
and Serial Number must have no leading zeros, except where the corresponding 2050
integer is itself zero in which case a single zero character is used. 2051

4. Go to Step 21. 2052

5. Follow the decoding procedure given in Section 3.5.1.2 (for SSCC-64) or in 2053
Section 3.5.2.2 (for SSCC-96) to obtain the decimal Company Prefix p1p2...pL, 2054
and the decimal Serial Reference i1i2…s(17-L), and the Filter Value F. If the 2055
decoding procedure fails, proceed to Step 20, otherwise proceed to the next step. 2056

6. Create an EPC Tag URI by concatenating the following: the string 2057
urn:epc:tag:, the encoding scheme (sscc-64 or sscc-96), a colon (:) 2058
character, the Filter Value F as a decimal integer, a dot (.) character, the 2059
Company Prefix p1p2...pL where each digit (including any leading zeros) becomes 2060
the corresponding ASCII digit character, a dot (.) character, and the Serial 2061
Reference i1i2…i(17-L) (handled similarly). 2062

7. Go to Step 21. 2063

8. Follow the decoding procedure given in Section 3.6.1.2 (for SGLN-64) or in 2064
Section 3.6.2.2 (for SGLN-96) to obtain the decimal Company Prefix p1p2...pL, 2065
the decimal Location Reference i1i2…i(12-L), the Filter Value F, and the Serial 2066
Number S. If the decoding procedure fails, proceed to Step 20, otherwise proceed 2067
to the next step. 2068

9. Create an EPC Tag URI by concatenating the following: the string 2069
urn:epc:tag:, the encoding scheme (sgln-64 or sgln-96), a colon (:) 2070
character, the Filter Value F as a decimal integer, a dot (.) character, the 2071
Company Prefix p1p2...pL where each digit (including any leading zeros) becomes 2072
the corresponding ASCII digit character, a dot (.) character, the Location 2073
Reference i1i2…i(12-L) (handled similarly), a dot (.) character, and the Serial 2074
Number S as a decimal integer. The portions corresponding to the Filter Value 2075

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 70 of 87

and Serial Number must have no leading zeros, except where the corresponding 2076
integer is itself zero in which case a single zero character is used. 2077

10. Go to Step 21. 2078

11. Follow the decoding procedure given in Section 3.7.1.2 (for GRAI-64) or in 2079
Section 3.7.2.2 (for GRAI-96) to obtain the decimal Company Prefix p1p2...pL, the 2080
decimal Asset Type i1i2…i(12-L), the Filter Value F, and the Serial Number 2081
d15d2…dK. If the decoding procedure fails, proceed to Step 20, otherwise proceed 2082
to the next step. 2083

12. Create an EPC Tag URI by concatenating the following: the string 2084
urn:epc:tag:, the encoding scheme (grai-64 or grai-96), a colon (:) 2085
character, the Filter Value F as a decimal integer, a dot (.) character, the 2086
Company Prefix p1p2...pL where each digit (including any leading zeros) becomes 2087
the corresponding ASCII digit character, a dot (.) character, the Asset Type 2088
s1s2…s(12-L) (handled similarly), a dot (.) character, and the Serial Number 2089
d15d2…dK as a decimal integer. The portions corresponding to the Filter Value 2090
and Serial Number must have no leading zeros, except where the corresponding 2091
integer is itself zero in which case a single zero character is used. 2092

13. Got to Step 21. 2093

14. Follow the decoding procedure given in Section 3.8.1.2 (for GIAI-64) or in 2094
Section 3.8.2.2 (for GIAI-96) to obtain the decimal Company Prefix p1p2...pL, the 2095
decimal Individual Asset Reference s1s2…sJ, and the Filter Value F. If the 2096
decoding procedure fails, proceed to Step 20, otherwise proceed to the next step. 2097

15. Create an EPC Tag URI by concatenating the following: the string 2098
urn:epc:tag:, the encoding scheme (giai-64 or giai-96), a colon (:) 2099
character, the Filter Value F as a decimal integer, a dot (.) character, the Company 2100
Prefix p1p2...pL where each digit (including any leading zeros) becomes the 2101
corresponding ASCII digit character, a dot (.) character, and the Individual Asset 2102
Reference i1i2…iJ (handled similarly). The portion corresponding to the Filter 2103
Value must have no leading zeros, except where the corresponding integer is itself 2104
zero in which case a single zero character is used. 2105

16. Go to Step 21. 2106

17. Follow the decoding procedure given in Section 3.3.1.2 to obtain the EPC 2107
Manager Number, the Object Class, and the Serial Number. 2108

18. Create an EPC Tag URI by concatenating the following: the string 2109
urn:epc:tag:gid-96:, the General Manager Number as a decimal number, 2110
a dot (.) character, the Object Class as a decimal number, a dot (.) character, and 2111
the Serial Number as a decimal number. Each decimal number must have no 2112
leading zeros, except where the integer is itself zero in which case the 2113
corresponding URI portion must consist of a single zero character. 2114

19. Go to Step 21. 2115

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 71 of 87

20. This tag is not a recognized EPC encoding, therefore create an EPC Raw URI by 2116
concatenating the following: the string urn:epc:raw:, the length of the bit 2117
string, a dot (.) character, a lowercase x character, and the value of the bit string 2118
considered as a single hexadecimal integer. Both the length and the value must 2119
have no leading zeros, except if the value is itself zero in which case a single zero 2120
character is used.. The value must have a number of characters equal to the 2121
length divided by four and rounded up to the nearest whole number, and must 2122
only use uppercase letters for the hexadecimal digits A, B, C, D, E, and F. 2123

21. The translation is now complete. 2124

 2125

The following procedure translates a URI into a bit-level EPC: 2126

1. If the URI is an SGTIN-URI (urn:epc:id:sgtin:), an SSCC-URI 2127
(urn:epc:id:sscc:), an SGLN-URI (urn:epc:id:sgln:), a GRAI-2128
URI (urn:epc:id:grai:), a GIAI-URI (urn:epc:id:giai:), a GID-2129
URI (urn:epc:id:gid:), a DOD-URI (urn:epc:id:usdod:)or an EPC 2130
Pattern URI (urn:epc:pat:), the URI cannot be translated into a bit-level 2131
EPC. 2132

2. If the URI is a Raw Tag URI (urn:epc:raw:), create the bit-level EPC by 2133
converting the second component of the Raw Tag URI into a binary integer, 2134
whose length is equal to the first component of the Raw Tag URI. If the value of 2135
the second component is too large to fit into a binary integer of that size, the URI 2136
cannot be translated into a bit-level EPC. 2137

3. If the URI is an EPC Tag URI or US DoD Tag URI 2138
(urn:epc:tag:encName:), parse the URI using the grammar for TagURI as 2139
given in Section 4.3.8 or for DODTagURI as given in Section 4.3.11.. If the URI 2140
cannot be parsed using these grammars, stop: the URI is illegal and cannot be 2141
translated into a bit-level EPC. If encName is usdod-96 or usdod-64, 2142
consult the appropriate U.S. Department of Defense document for specific 2143
translation rules. Otherwise, if encName is sgtin-96 or sgtin-64 go to 2144
Step 4, if encName is sscc-96 or sscc-64 go to Step 9, if encName is 2145
sgln-96 or sgln-64 go to Step 13, if encName is grai-96 or grai-64 go 2146
to Step 18, if encName is giai-96 or giai-64 go to Step 22, or if encName 2147
is gid-96 go to Step 26. 2148

4. Let the URI be written as 2149
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(13-L).s1s2…sS. 2150

5. Interpret f1f2…fF as a decimal integer F. 2151

6. Interpret s1s2…sS as a decimal integer S. 2152

7. Carry out the encoding procedure defined in Section 3.4.1.1 (SGTIN-64) or 2153
Section 3.4.2.1 (SGTIN-96), using i1p1p2…pLi2…i(13-L)0 as the EAN.UCC 2154
GTIN-14 (the trailing zero is a dummy check digit, which is ignored by the 2155

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 72 of 87

encoding procedure), L as the length of the EAN.UCC company prefix, F from 2156
Step 5 as the Filter Value, and S from Step 6 as the Serial Number. If the 2157
encoding procedure fails because an input is out of range, or because the 2158
procedure indicates a failure, stop: this URI cannot be encoded into an EPC tag. 2159

8. Go to Step 31. 2160

9. Let the URI be written as 2161
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(17-L). 2162

10. Interpret f1f2…fF as a decimal integer F. 2163

11. Carry out the encoding procedure defined in Section 3.5.1.1 (SSCC-64) or 2164
Section 3.5.2.1 (SSCC-96), using i1p1p2…pLi2i3…i(17-L)0 as the EAN.UCC 2165
SSCC, L as the length of the EAN.UCC company prefix, and F from Step 10 as 2166
the Filter Value. If the encoding procedure fails because an input is out of range, 2167
or because the procedure indicates a failure, stop: this URI cannot be encoded 2168
into an EPC tag. 2169

12. Go to Step 31. 2170

13. Let the URI be written as 2171
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(12-L).s1s2…sS. 2172

14. Interpret f1f2…fF as a decimal integer F. 2173

15. Interpret s1s2…sS as a decimal integer S. 2174

16. Carry out the encoding procedure defined in Section 3.6.1.1 (SGLN-64) or 2175
Section 3.6.2.1 (SGLN-96), using p1p2…pLi1i2…i(12-L)0 as the EAN.UCC 2176
GLN (the trailing zero is a dummy check digit, which is ignored by the encoding 2177
procedure), L as the length of the EAN.UCC company prefix, F from Step 14 as 2178
the Filter Value, and S from Step 15 as the Serial Number. If the encoding 2179
procedure fails because an input is out of range, or because the procedure 2180
indicates a failure, stop: this URI cannot be encoded into an EPC tag. 2181

17. Go to Step 31. 2182

18. Let the URI be written as 2183
urn:epc:tag:encName:f1f2…fF.p1p2…pL.i1i2…i(12-L).s1s2…sS. 2184

19. Interpret f1f2…fF as a decimal integer F. 2185

20. Carry out the encoding procedure defined in Section 3.7.1.1 (GRAI-64) or 2186
Section 3.7.2.1 (GRAI-96), using 0p1p2…pLi1i2…i(12-L)0s1s2…sS as the 2187
EAN.UCC GRAI (the second zero is a dummy check digit, which is ignored by 2188
the encoding procedure), L as the length of the EAN.UCC company prefix, and F 2189
from Step 19 as the Filter Value. If the encoding procedure fails because an input 2190
is out of range, or because the procedure indicates a failure, stop: this URI cannot 2191
be encoded into an EPC tag. 2192

21. Go to Step 31. 2193

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 73 of 87

22. Let the URI be written as 2194
urn:epc:tag:encName:f1f2…fF.p1p2…pL.s1s2…ss. 2195

23. Interpret f1f2…fF as a decimal integer F. 2196

24. Carry out the encoding procedure defined in Section 3.8.1.1 (GIAI-64) or 2197
Section 3.8.2.1 (GIAI-96), using p1p2…pLs1s2…sS as the EAN.UCC GIAI, L as 2198
the length of the EAN.UCC company prefix, and F from Step 23 as the Filter 2199
Value. If the encoding procedure fails because an input is out of range, or 2200
because the procedure indicates a failure, stop: this URI cannot be encoded into 2201
an EPC tag. 2202

25. Go to Step 31. 2203

26. Let the URI be written as 2204
urn:epc:tag:encName:m1m2…mL.c1c2…cK.s1s2…sS. 2205

27. Interpret m1m2…mL as a decimal integer M. 2206

28. Interpret c1c2…cK as a decimal integer C. 2207

29. Interpret s1s2…sS as a decimal integer S. 2208

30. Carry out the encoding procedure defined in Section 3.3.1.1 using M from Step 27 2209
as the General Manager Number, C from Step 28 as the Object Class, and S from 2210
Step 29 as the Serial Number. If the encoding procedure fails because an input is 2211
out of range, or because the procedure indicates a failure, stop: this URI cannot 2212
be encoded into an EPC tag. 2213

31. The translation is complete. 2214

6 Semantics of EPC Pattern URIs 2215
The meaning of an EPC Pattern URI (urn:epc:pat:) can be formally defined as 2216
denoting a set of encoding-specific EPCs. The set of EPCs denoted by a specific EPC 2217
Pattern URI is defined by the following decision procedure, which says whether a given 2218
EPC Tag URI belongs to the set denoted by the EPC Pattern URI. 2219

Let urn:epc:pat:EncName:P1.P2...Pn be an EPC Pattern URI. Let 2220
urn:epc:tag:EncName:C1.C2...Cn be an EPC Tag URI, where the EncName 2221
field of both URIs is the same. The number of components (n) depends on the value of 2222
EncName. 2223

First, any EPC Tag URI component Ci is said to match the corresponding EPC Pattern 2224
URI component Pi if: 2225

• Pi is a NumericComponent, and Ci is equal to Pi; or 2226

• Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value 2227
as well as in length; or 2228

• Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or 2229

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 74 of 87

• Pi is a RangeComponent [lo-hi], and lo ≤ Ci ≤ hi; or 2230

• Pi is a StarComponent (and Ci is anything at all) 2231

Then the EPC Tag URI is a member of the set denoted by the EPC Pattern URI if and 2232
only if Ci matches Pi for all 1 ≤ i ≤ n. 2233

7 Background Information 2234
This document draws from the previous work at the Auto-ID Center, and we recognize 2237
the contribution of the following individuals: David Brock (MIT), Joe Foley (MIT), 2238
Sunny Siu (MIT), Sanjay Sarma (MIT), and Dan Engels (MIT). In addition, we recognize 2239
the contribution from Steve Rehling (P&G) on EPC to GTIN mapping. 2240

The following papers capture the contributions of these individuals: 2241

• Engels, D., Foley, J., Waldrop, J., Sarma, S. and Brock, D., "The Networked Physical 2242
World: An Automated Identification Architecture" 2243
2nd IEEE Workshop on Internet Applications (WIAPP '01), 2244
(http://csdl.computer.org/comp/proceedings/wiapp/2001/1137/00/11370076.pdf) 2245

• Brock, David. "The Electronic Product Code (EPC), A Naming Scheme for Physical 2246
Objects", 2001. (http://www.autoidlabs.org/whitepapers/MIT-AUTOID-WH-002.pdf) 2247

• Brock, David. "The Compact Electronic Product Code; A 64-bit Representation of the 2248
Electronic Product Code", 2001.(http://www.autoidlabs.com/whitepapers/MIT-2249
AUTOID-WH-008.pdf) 2250

8 References 2251
[EANUCCGS] “General EAN.UCC Specifications.” Version 5.0, EAN International and 2252
the Uniform Code Council, IncTM, January 2004. 2253

[MIT-TR009] D. Engels, “The Use of the Electronic Product Code™,” MIT Auto-ID 2254
Center Technical Report MIT-TR007, February 2003, 2255
(http://www.autoidlabs.com/whitepapers/mit-autoid-tr009.pdf) 2256

 [RFC2141] R. Moats, “URN Syntax,” Internet Engineering Task Force Request for 2257
Comments RFC-2141, May 1997, http://www.ietf.org/rfc/rfc2141.txt. 2258

[DOD Constructs] “United States Department of Defense Suppliers’ Passive RFID 2259
Information Guide,” http://www.dodrfid.org/supplierguide.htm 2260

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 75 of 87

 2261

9 Appendix A: Encoding Scheme Summary Tables 2262
 2263

SGTIN Summary

SGTIN-64 Header Filter
Value Company Prefix Index Item

Reference Serial Number

2 bits 3 bits 14 bits 20 bits 25 bits

10

(Binary
value)

(Refer to
Table

below for
values)

16,383

(Max. decimal value)

9 - 1,048,575

(Max. decimal
range*)

33,554,431

(Max. decimal value)

SGTIN-96 Header Filter
Value Partition Company Prefix Item

Reference
Serial Number

8 3 3 20-40 24 - 4 38

0011
0000

(Binary
value)

(Refer to
Table

below for
values)

(Refer to
Table

below for
values))

999,999 –
999,999,999,999

(Max. decimal
range**)

9,999,999 – 9

(Max .decimal
range**)

274,877,906,943

(Max .decimal value)

Filter Values

(Non-normative)
SGTIN Partition Table

Type Binary
Value

Partition
Value

Company Prefix Item Reference and Indicator Digit

All Others 000 Bits Digits Bits Digit

Retail
Consumer
Trade Item

001 0 40 12 4 1

Standard
Trade Item
Grouping

010 1 37 11 7 2

Single
Shipping /
Consumer
Trade Item

011 2 34 10 10 3

Reserved 100 3 30 9 14 4

Reserved 101 4 27 8 17 5

Reserved 110 5 24 7 20 6

Reserved 111 6 20 6 24 7

*Range of Item Reference field varies with the length of the Company Prefix 2264
**Range of Company Prefix and Item Reference fields vary according to the contents of the Partition field. 2265

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 76 of 87

 2266

*Range of Serial Reference field varies with the length of the Company Prefix 2267
**Range of Company Prefix and Serial Reference fields vary according to the contents of the Partition field. 2268

SSCC Summary

SSCC-64 Header Filter
Value Company Prefix Index Serial Reference

8 3 14 39

0000
1000

(Binary
value)

(Refer to
Table below

for values)

16,383

(Max. decimal value)

99,999 - 99,999,999,999

(Max. decimal range*)

SSCC-96 Header Filter
Value Partition Company Prefix Serial

Reference Unallocated

8 3 3 20-40 38-18 24

0011
0001

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table below

for values)

999,999 –
999,999,999,999

(Max. decimal range**)

99,999,999,999 –
99,999

(Max. decimal
range**)

[Not Used]

Filter Values

(Non-normative)
SSCC Partition Table

Type Binary
Value

Partition
Value

Company Prefix Serial Reference and extension digit

All Others 000 Bits Digits Bits Digits

Undefined 001 0 40 12 18 5

Logistical /
Shipping Unit

010 1 37 11 21 6

Reserved 011 2 34 10 24 7

Reserved 100 3 30 9 28 8

Reserved 101 4 27 8 31 9

Reserved 110 5 24 7 34 10

Reserved 111 6 20 6 38 11

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 77 of 87

 2269

*Range of Location Reference field varies with the length of the Company Prefix 2270
**Range of Company Prefix and Location Reference fields vary according to contents of the Partition field. 2271

SGLN Summary

SGLN-64 Header Filter Value Company Prefix Index Location
Reference Serial Number

8 3 14 20 19

0000
1001

(Binary
value)

(Refer to
Table below

for values)

16,383

(Max. decimal value)

999,999 - 0
(Max.

decimal
range*)

524,287

(Max .decimal
value)

[Not Used]

SGLN-96 Header Filter Value Partition Company Prefix Location
Reference Serial Number

8 3 3 20-40 21-1 41

0011
0010

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table below

for values)

999,999 –
999,999,999,999

(Max. decimal
range**)

999,999 – 0

 (Max.
decimal

range**)

2,199,023,255,551

 (Max. decimal
value)

[Not Used]

Filter Values

(Non-normative)
SGLN Partition Table

Type Binary
Value

Partition
Value

Company Prefix Location Reference

All
Others

000 Bits Digits Bits Digit

Reserved 001 0 40 12 1 0

Reserved 010 1 37 11 4 1

Reserved 011 2 34 10 7 2

Reserved 100 3 30 9 11 3

Reserved 101 4 27 8 14 4

Reserved 110 5 24 7 17 5

Reserved 111 6 20 6 21 6

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 78 of 87

 2272

GRAI Summary

GRAI-64 Header Filter
Value Company Prefix Index Asset Type Serial Number

8 3 14 20 19

0000
1010

(Binary
value)

(Refer to
Table

below for
values)

16,383

(Max. decimal value)

999,999 - 0

(Max.
decimal
range*)

524,287

(Max. decimal capacity)

GRAI-96 Header Filter
Value Partition Company Prefix Asset Type Serial Number

8 3 3 20-40 24 – 4 38

0011
0011

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table

below for
values)

999,999 –
999,999,999,999

(Max. decimal
range**)

999,999 – 0

(Max.
decimal

range**)

274,877,906,943

(Max. decimal value)

Filter Values

(Non-normative)
GRAI Partition Table

Type Binary
Value

Partition
Value

Company Prefix Asset Type

All Others 000 Bits Digits Bits Digit

Reserved 001 0 40 12 4 0

Reserved 010 1 37 11 7 1

Reserved 011 2 34 10 10 2

Reserved 100 3 30 9 14 3

Reserved 101 4 27 8 17 4

Reserved 110 5 24 7 20 5

Reserved 111 6 20 6 24 6

*Range of Asset Type field varies with Company Prefix. 2273
**Range of Company Prefix and Asset Type fields vary according to contents of the Partition field. 2274

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 79 of 87

 2275

 2276
*Range of Company Prefix and Individual Asset Reference fields vary according to contents of the Partition 2277
field. 2278

GIAI Summary

GIAI-64 Header Filter
Value Company Prefix Index Individual Asset Reference

8 3 14 39

0000
1011

(Binary
value)

(Refer to
Table below

for values)

16,383

(Max. decimal value)

549,755,813,887

(Max. decimal value)

GIAI-96 Header Filter
Value Partition Company Prefix Individual Asset Reference

8 3 3 20-40 62-42

0011
0100

(Binary
value)

(Refer to
Table below

for values)

(Refer to
Table below

for values)

999,999 –
999,999,999,999

(Max. decimal range*)

4,611,686,018,427,387,903 -
4,398,046,511,103

(Max. decimal range*)

Filter Values

(To be confirmed)
GIAI Partition Table

Type Binary
Value

Partition
Value

Company Prefix Individual Asset Reference

All Others 000 Bits Digits Bits Digits

Reserved 001 0 40 12 42 12

Reserved 010 1 37 11 45 13

Reserved 011 2 34 10 48 14

Reserved 100 3 30 9 52 15

Reserved 101 4 27 8 55 16

Reserved 110 5 24 7 58 17

Reserved 111 6 20 6 62 18

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 80 of 87

 2279

10 Appendix B: EPC Header Values and Tag Identity 2280
Lengths 2281

With regards to tag identity lengths and EPC Header values: In the decoding process of a 2282
single tag: Having knowledge of the identifier length during the signal decoding process 2283
of the reader enables the reader to know when to stop trying to decode bit values. 2284
Knowing when to stop enables the readers to be more efficient in reading speed. For 2285
example, if the same Header value is used at 64 and 96 bits, the reader, upon finding that 2286
header value, must try to decode 96 bits. After decoding 96 bits, the reader must check 2287
the CRC (Cyclic Redundancy Check error check code) against both the 64-bit and 96-bit 2288
numbers it has decoded. If both error checks fail, the numbers are thrown away and the 2289
tag reread. If one of the numbers passes the error check, then that is reported as the valid 2290
number. Note that there is a non-zero, i.e., greater than zero but very small, probability 2291
that an erroneous number can be reported in this process. If both numbers pass the error 2292
check, then there is a problem. Note that there is a small probability that both a 64 bit 2293

EPC and 96-bit EPC whose first 64 bits are the same as the 64-bit EPC will have the 2294
same CRC. Other measures would have to be taken to determine which of the two 2295
numbers is valid (and perhaps both are). All of this slows down the reading process and 2296
introduces potential errors in identified numbers (erroneous numbers may be reported) 2297
and non-identified numbers (tags may be unread due to some of the above). These 2298
problems are primarily evident while reading weakly replying tags, which are often the 2299
tags furthest from the reader antenna and in noisy environments. Encoding the length 2300
within the Header eliminates virtually all of the error probabilities above and those that 2301
remain are reduced significantly in probability. 2302

In the decoding process of multiple tags responding: When multiple tags respond at the 2303
same time their communications will overlap in time. Tags of the same length overlap 2304
almost completely bit for bit when the same reader controls them. Tags of different 2305
lengths will overlap almost completely over the first bits, but the longer tag will continue 2306
communicating after the shorter tag has stopped. Tags of very strong communication 2307
strength will mask tags responding with much weaker strength. The reader can use 2308
communication signal strength as a determiner of when to stop looking to decode bits. 2309
Tags of almost equal communication strength will tend to interfere almost completely 2310
with one another over the first bits before the shorter tag stops. The reader can usually 2311
detect these collisions, but not always when weak signals are trying to be pulled out of 2312
noise, as is the case for the distant tags. When the tags reply with close, but not equal 2313
strength, it may be possible to decode the stronger signal. When the short tag has the 2314
stronger signal, it may be possible to decode the weaker longer tag signal without being 2315
able to definitively say that a second tag is responding due to changes in signal strength. 2316
These problems are primarily evident in weakly replying tags. Encoding the length in the 2317
Header enables the reader to know when to stop pulling out the numbers, which enables it 2318
to more efficiently determine the validity of the numbers. 2319

In the identification process: The reader can "select" what length tags it wishes to 2320
communicate with. This eliminates the decoding problems encountered above, since all 2321

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 81 of 87

communicating tags are of the same length and the reader knows what that length is a 2322
priori. For efficiency reasons, a single selection for a length is preferred, but two can be 2323
workable. More than two becomes very inefficient. 2324

The net effect of encoding the length within the Header is to reduce the probabilities of 2325
error in the decoding process and to increase the efficiency of the identification process. 2326

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 82 of 87

11 Appendix C: Example of a Specific Trade Item 2327
(SGTIN) 2328

This section presents an example of a specific trade item using SGTIN (Serialized GTIN). 2329
Each representation serves a distinct purpose in the software stack. Generally,, the 2330
highest applicable level should be used. The GTIN used in the example is 2331
10614141007346. 2332

Physical Realization Layer

 …

• This layer concerns the air interface to the tags.

Pure Identity Layer
• In the URN, GTIN indicator “1” is

repositioned and check digit “6” is dropped.

• Use this URN for all exchange that does not
depend on the physical type of tag used.

urn:epc:id:sgtin:0614141.100734.2

Encoding Layer

SGTIN

• When encoded as GTIN-96, GTIN indicator
“1” is repositioned and check digit “6” is
dropped. Header, Partition, and Filter Value
are added.

• Use this URN when software must deal with
direct writing of tags and other low-level tag
operations.

GTIN 10614141007346
+

Serial Number 2

SGTIN-96
Header Filter Value Partition Company

Prefix
Item
Reference

Serial
Number

0011
0000

3

(dec)

5

(dec)

0614141

(dec)

100734
(dec)

2

(dec)

Urn:epc:tag:sgtin-96:3.0614141.100734.2

Class 1 Gen 1 Class 1 Gen 2

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 83 of 87

 2333

 2334
 2335

 2336

 2337

 2338

• (01) is the Application Identifier for GTIN, and (21) is the Application Identifier 2339
for Serial Number. Application Identifiers are used in certain bar codes. The 2340
header fulfills this function (and others) in EPC. 2341

• Header for SGTIN-96 is 00110000. 2342

• Filter Value of 3 (Single Shipping/ Consumer Trade Item) was chosen for this 2343
example. 2344

• Since the Company Prefix is seven-digits long (0614141), the Partition value is 5. 2345
This means Company Prefix has 24 bits and Item Reference has 20 bits. 2346

• Indicator digit 1 is repositioned as the first digit in the Item Reference. 2347

• Check digit 6 is dropped. 2348

 2349

Explanation of SGTIN Filter Values (non-normative). 2350

SGTINs can be assigned at several levels, including: item, inner pack, case, and pallet. 2351
RFID can read through cardboard, and reading un-needed tags can slow us down, so 2352
Filter Values are used to “filter in” desired tags, or “filter out” unwanted tags. Filter 2353
values are used within the key type (i.e. SGTIN). While it is possible that filter values for 2354
several levels of packaging may be defined in the future, it was decided to use a 2355

 Header Filter
Value

Partition Company
Prefix

Item
Reference

Serial
Number

8 bits 3 bits 3 bits 24 bits 20 bits 38 bits SGTIN-96

0011
0000
(Binary
value)

3

(Decimal
value)

5

(Decimal
value)

0614141

(Decimal
value)

100734

(Decimal
value)

2

(Decimal
value)

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 84 of 87

minimum of values for now until the community gains more practical experience in their 2356
use. Therefore the three major categories of SGTIN filter values can be thought of in the 2357
following high level terms: 2358

• Single Unit: A Retail Consumer Trade Item 2359

• Not-a-single unit: A Standard Trade Item Grouping 2360

• Items that could be included in both categories: For example, a Single Shipping 2361
container that contains a Single Consumer Trade Item 2362

 2363

 2364

Three Filter Values

001 - Retail
Consumer
Trade Item

011 - Single
Shipping/Consumer

Trade Item Single
010 - Standard Trade

Item Grouping

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 85 of 87

 2365

12 Appendix D: Decimal values of powers of 2 Table 2366
 2367

n (2^n)10 n (2^n)10

0 1 33 8,589,934,592
1 2 34 17,179,869,184
2 4 35 34,359,738,368
3 8 36 68,719,476,736
4 16 37 137,438,953,472
5 32 38 274,877,906,944
6 64 39 549,755,813,888
7 128 40 1,099,511,627,776
8 256 41 2,199,023,255,552
9 512 42 4,398,046,511,104
10 1,024 43 8,796,093,022,208
11 2,048 44 17,592,186,044,416
12 4,096 45 35,184,372,088,832
13 8,192 46 70,368,744,177,664
14 16,384 47 140,737,488,355,328
15 32,768 48 281,474,976,710,656
16 65,536 49 562,949,953,421,312
17 131,072 50 1,125,899,906,842,624
18 262,144 51 2,251,799,813,685,248
19 524,288 52 4,503,599,627,370,496
20 1,048,576 53 9,007,199,254,740,992
21 2,097,152 54 18,014,398,509,481,984
22 4,194,304 55 36,028,797,018,963,968
23 8,388,608 56 72,057,594,037,927,936
24 16,777,216 57 144,115,188,075,855,872
25 33,554,432 58 288,230,376,151,711,744
26 67,108,864 59 576,460,752,303,423,488
27 143,217,728 60 1,152,921,504,606,846,976
28 268,435,456 61 2,305,843,009,213,693,952
29 536,870,912 62 4,611,686,018,427,387,904
30 1,073,741,824 63 9,223,372,036,854,775,808
31 2,147,483,648 64 18,446,744,073,709,551,616
32 4,294,967,296

 2368

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 86 of 87

13 Appendix E: List of Abbreviations 2369
 2370

BAG Business Action Group

EPC Electronic Product Code

EPCIS EPC Information Services

GIAI Global Individual Asset Identifier

GID General Identifier

GLN Global Location Number

GRAI Global Returnable Asset Identifier

GTIN Global Trade Item Number

HAG Hardware Action Group

ONS Object Naming Service

RFID Radio Frequency Identification

SAG Software Action Group

SGLN Serialized Global Location Number

SSCC Serial Shipping Container Code

URI Uniform Resource Identifier

URN Uniform Resource Name

 2371

 2372

 Copyright ©2005 EPCglobal Inc™ , All Rights Reserved. Page 87 of 87

14 Appendix F: General EAN.UCC Specifications 2373
(Section 3.0 Definition of Element Strings and Section 3.7 EPCglobal Tag Data 2374
Standard.) 2375

This section provides EAN.UCC approval of this version of the EPCglobal® Tag Data 2376
Standard with the following EAN.UCC Application Identifier definition restrictions: 2377

Companies should use the EAN.UCC specifications to define the applicable fields in 2378
databases and other ICT-systems. 2379

For EAN.UCC use of EPC 64-bit tags, the following applies: 2380

• AI (00) SSCC (no restrictions) 2381
• AI (01) GTIN + AI (21) Serial Number: The Section 3.6.13 Serial Number definition is 2382

restricted to permit assignment of 33,554,431 numeric-only serial numbers. 2383
• AI (41n) GLN + AI (21) Serial Number: The Tag Data Standard V1.1 R1.23 is approved 2384

with a complete restriction on GLN serialization because this question has not been 2385
resolved by GSMP at this time. 2386

• AI (8003) GRAI Serial Number: The Section 3.6.49 Global Returnable Asset Identifier 2387
definition is restricted to permit assignment of 524,288 numeric-only serial numbers and 2388
the serial number element is mandatory. 2389

• AI (8004) GIAI Serial Number: The Section 3.6.50 Global Individual Asset Identifier 2390
definition is restricted to permit assignment of 549,755,813,888 numeric-only serial 2391
numbers. 2392

For EAN.UCC use of EPC96-bit tags, the following applies: 2393
• AI (00) SSCC (no restrictions) 2394
• AI (01) GTIN + AI (21) Serial Number: The Section 3.6.13 Serial Number definition is 2395

restricted to permit assignment of 274,877,906,943 numeric-only serial numbers) 2396
• AI (41n) GLN + AI (21) Serial Number: The Tag Data Standard V1.1 R1.23 is approved 2397

with a complete restriction on GLN serialization because this question has not been 2398
resolved by GSMP at this time. 2399

• AI (8003) GRAI Serial Number: The Section 3.6.49 Global Returnable Asset Identifier 2400
definition is restricted to permit assignment of 274,877,906,943 numeric-only serial 2401
numbers and the serial number element is mandatory. 2402

• AI (8004) GIAI Serial Number: The Section 3.6.50 Global Individual Asset Identifier 2403
definition is restricted to permit assignment of 4,611,686,018,427,387,904 numeric-only 2404
serial numbers. 2405

 2406

• 64-bit tag application is limited to 16,383 EAN.UCC Company Prefixes
and therefore EAN.UCC EPCglobal implementation strategies will focus
on tag capacity that can accommodate all EAN.UCC member companies.
The 64-bit tag will be approved for use by EAN.UCC member companies
with the restrictions that follow:

